
Fundamentals of SQL
Server 2012 Replication
By Sebastian Meine, Ph.D.

 tairways handbook

Fundamentals of SQL Server
2012 Replication

Sebastian Meine, Ph.D.

First published by Simple Talk Publishing August 2013

Copyright Sebastian Meine 2013

ISBN – 978-1-906434-98-4

The right of Sebastian Meine to be identified as the author of this work has been asserted by him in

accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval

system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or

otherwise) without the prior written consent of the publisher. Any person who does any unauthorized act in

relation to this publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold,

hired out, or otherwise circulated without the publisher's prior consent in any form other than which it

is published and without a similar condition including this condition being imposed on the subsequent

publisher.

Technical Review: Kalen Delaney and Robert Sheldon

Editor: Robert Sheldon

Cover Image: Sebastian Meine

Typeset: Peter Woodhouse and Gower Associates

Table of Contents

Chapter 1: Overview of SQL Server Replication_________________ 20
Putting SQL Server Replication to Work __________________________________ 21
Replication Components ___ 23

Articles ___24
Publications ___24
Publication database __ 25
Publisher ___ 25
Distributor __26
Distribution databases ___26
Subscriber___27
Subscriptions __27
Subscription databases __27
Replication agents __28
Replication maintenance jobs ___30

How Terms Are Used __30
Replication Types ___ 31

Snapshot replication __ 31
Transactional replication ___ 32
Merge replication ___ 32

Summary __ 33

Chapter 2: Configuring a Basic Replication Setup ______________ 34
Setting Up the Distributor __ 35
Setting Up a Publication ___47
Setting Up a Subscription ___ 60
Success! ___ 73
Summary __74

Chapter 3: The Role of the Distributor ________________________ 75
Distribution Components __ 75

The distribution database __ 75
The snapshot folder ___77
The replication agents ___77

Best Practices ___78
Setting up Distribution __78

Removing replication __ 80
Setting up the Distributor __84
Setting up distribution on the Publisher _______________________________ 90
Implementing multiple distribution databases ___________________________93

Summary ___ 97

Chapter 4: Transactional Replication – the Replication Agents ___ 98
Replication Agents ___ 98

Snapshot Agent ___100
Log Reader Agent ___ 102
Distribution Agent ___104

Summary ___104

Chapter 5: Transactional Replication – the Publication ________ 106
Preparing to Create a Publication _______________________________________106

Creating a database __ 107
Enabling a database for replication ____________________________________109

Creating a Publication __ 112
Setting up your database __ 112
Setting up your articles ___ 118
Setting up the initial snapshot _______________________________________ 124
Setting up security ___ 126
Completing the publication setup ____________________________________ 131

Potential Problems ___ 134
Summary ___ 135

Chapter 6: The Publication Access List ______________________ 136
Setting Up a Subscription ___ 136
Configuring the Publication Access List __________________________________ 137
Creating the Subscription ___ 142
Summary ___ 142

Chapter 7: Transactional Replication – the Subscription _______ 143
Setting up a Subscription __144

Connecting to the Publisher ___ 144
Selecting the Distribution Agent location ______________________________ 148
Specifying the Subscriber and the subscription database __________________ 150
Configuring security on the Distribution Agent _________________________ 152

Account Permissions ___ 155
Finalizing the Subscription __ 156
Configuring Retention __160

Configuring retention on the Distributor ______________________________ 161
Configuring retention on the Publisher ________________________________ 165

Summary ___168

Chapter 8: SQL Server Agent Jobs for Transactional Replication _ 169
SQL Server Agent Jobs __169

Snapshot Agent jobs ___ 169
Log Reader Agent job __ 170
Distribution Agent jobs ___ 170
Replication Maintenance jobs __ 171

Creating the SQL Server Agent Jobs _____________________________________ 171
Local distribution ___ 172
Remote distribution ___ 174
Publication ___ 175
Push subscription ___ 176
Pull subscription __ 178

Summary ___179

Chapter 9: Merge Replication – the Replication Agents ________ 180
Merge Replication Components __180

Snapshot Agent ___ 183
Triggers, tables, and views ___ 184
Merge Agent __ 186

Summary ___ 187

Chapter 10: Merge Replication – the Publication ______________ 188
Enabling a Database for Merge Replication _______________________________ 191
Creating a Publication __194

Adding a publication ___ 194
Adding articles to your publication ____________________________________199
Configuring the Snapshot Agent_____________________________________ 209
Finalizing your publication __ 213

Potential Problems ___ 216
Summary ___ 216

Chapter 11: Merge Replication – the Subscription ______________217
Setting up a Subscription __ 217

Selecting the Publisher ___ 218
Selecting the Merge Agent location ___________________________________ 222
Specifying the target database _______________________________________224
Configuring security ___ 225
Setting up permissions ___229
Setting up the schedule __230
Initializing the subscription database __________________________________ 232
Selecting the subscription type _______________________________________ 234
Finishing up your subscription _______________________________________ 236

Setting Up Your Subscription's Retention ________________________________239
Synchronizing Your Subscription Manually ______________________________ 241
Summary __ 244

Chapter 12: Merge Replication – Conflicts ___________________ 245
Conflict Types __ 246
Configuring the Tracking Level _______________________________________ 246

Row-level tracking ___248
Column-level tracking __249

Conflict Resolvers __250
The default resolver __ 252
Other resolvers ___ 255
Custom resolvers __ 255
Business logic handlers ___ 256
Interactive conflict resolution __ 256

Reviewing Conflicts __ 257
Summary ___263

Chapter 13: Replication Monitor ____________________________ 264
Starting Replication Monitor ___ 264
Removing a Publisher ___267
Connecting to a Publisher __ 269
Viewing Information About a Publisher, Its Publications and Subscriptions ___ 275

Viewing information about a Publisher ________________________________ 275
Viewing information about transactional publications ____________________ 281
Viewing information about merge publications __________________________287
Viewing information about snapshot publications ______________________ 290

Subscription Information ___291
Alerts __295
Summary ___297

Chapter 14: Troubleshooting _______________________________ 298
Troubleshooting the Publication ______________________________________ 299

The Log Reader Agent ___ 299
The Snapshot Agent ___ 311

Troubleshooting a Subscription __ 325
But what about the PAL? __ 338

Other Tools and Issues __ 339
Tracer tokens ___ 339
Always check the details __340
Data problems __ 342

Summary ___346

x

Foreword

Replication is the oldest of the high availability technologies in SQL Server. Introduced
in SQL Server 6, replication synchronizes data between SQL Server instances, typically
copying data from a Publisher, which is the source of the data, to a Subscriber, which
hosts the copied data. If the Publisher fails, the Subscriber can take over data operations.
Unlike other high availability technologies, replication gives the DBA full control over
how much or how little of the data should be replicated. The DBA can choose which
tables to replicate from the Publisher to one or more Subscribers and even decide which
columns within those tables to replicate.

As a very mature technology, replication is also very robust and, in most cases, very
straightforward to set up and manage. This book will get you started with SQL Server
replication even if you've never worked with any kind of high availability feature, and
if you've already been working with replication, the discussions about troubleshooting
could still prove invaluable.

Replication lends itself very nicely to a step-by-step tutorial of the sort presented in this
book. Sebastian guides you through setting up a complete replication scenario. Subse-
quent chapters then drill into more details about Publishers and Subscribers, as well as
publications, subscriptions and articles. Following a set of chapters that discuss transac-
tional replication are several on merge replication.

Sebastian Meine has been working with SQL Server for over a decade. I first met him
as a student in a SQL Server Internals class I was teaching for the company he worked
for. I noticed immediately that Sebastian was not one to be satisfied with simple expla-
nations. He wanted to know as much as he could about every detail of the SQL Server
engine, including not just what and how, but also why. I was not always able to answer
every question he had, and many were about issues I had never thought of before, which
inspired me to do more digging on my own.

xi

Since that class, Sebastian and I have kept in touch. I was delighted to offer him the
opportunity to write the original Stairway on which this book is based and even more
delighted when he accepted.

If you've wanted to learn the what, how and why of SQL Server replication, you've come
to the right place! I hope you enjoy reading and learning from this book as much as I
enjoyed editing it.

Kalen Delaney, www.SQLServerInternaLS.com

Poulsbo, WA – July 2013

About the Author

Sebastian Meine is the SQL Stylist at sqlity.net llc (http://SQLIty.net). After receiving his
PhD in Computer Science at the University of Linz, Austria, he spent several years at a
global Fortune 50 company as software architect responsible for code quality and the
performance of dozens of large-scale database installations nationwide.

In 2010, to fully engage in his passion for SQL Server, he founded sqlity.net. Since that
time he has been helping his clients to boost their SQL Server health, enhance their
T-SQL coding skills and tighten their SQL Server security.

Sebastian is a sought-after trainer, speaker and author who shares his knowledge
regularly within the worldwide SQL community through his writings and public speaking
engagements. Additionally, he is co-author of tSQLt, the Database Unit Testing Framework
for SQL Server. tSQLt is open source and available at http://tSQLt.org.

Sebastian is also the CTO of TSTS Inc., a company that provides online personalized
training and workout solutions.

http://www.SQLServerInternals.com
http://sqlity.net/
http://tSQLt.org

xii

About the Technical Reviewer

Kalen Delaney has been working with SQL Server for 25 years and provides performance
consulting services as well as advanced SQL Server training to clients around the world,
using her own custom-developed curriculum. She has been a SQL Server MVP since 1993
and has been writing about SQL Server for almost as long. Kalen has spoken at dozens
of technical conferences, including every US PASS conference since the organization's
founding in 1999. Kalen is a contributing editor and columnist for SQL Server Magazine
and the author or co-author of several of the most deeply technical books on SQL Server,
including SQL Server 2008 Internals and the upcoming SQL Server 2012 Internals, both
from Microsoft Press. Kalen blogs at www.SQLbLog.com and her personal website and
schedule can be found at www.SQLServerInternaLS.com.

Acknowledgements

This is the place where people write that they could not have done this alone. This book
is no exception, and a lot of people helped and worked hard on making it possible. I am
grateful for all the help I received, especially from the team at Red Gate.

Of all the people who helped, there are two who stand out. The first is my good friend
Kalen Delaney, who got me into the SQL Server Central Stairway project in the first place
and then spent numerous hours reviewing and editing the original Stairway to SQL Server
Replication. The second is Robert Sheldon. He spent countless hours reviewing and
editing to make sure that the book stayed on a consistent technical and linguistic level
throughout.

Thank you both for working with me on turning this "small project" into the book you are
holding in your hands today.

Sebastian Meine – August 2013

http://www.sqlblog.com
http://www.SQLServerInternals.com

13

Introduction

Many of my clients need to make data that lives on one server available on another
server. There are many reasons for such a requirement. You might want to speed up
cross-server queries by providing a local copy of the data. Or you might want to make the
data available to resource intensive reporting queries without impacting the OLTP load,
maybe even with an intentional delay so you're always reporting against complete days
only. Finally, you might be looking to implement high availability. In all these situations,
SQL Server Replication is a viable option to look at when planning for the implemen-
tation of such a requirement.

With this book, I want to introduce you into the vast world of SQL Server Replication
and show you its most important strengths and weaknesses. After working through the
exercises, you will be able to make an informed decision whether replication is the right
feature to use and which type of replication is the most advantageous in your situation.
You will also know when to stay away from replication and use other features such as
simple log shipping or the new "Always On" feature set.

What This Book Covers

Fundamentals of SQL Server 2012 Replication provides a hands-on introduction to SQL
Server replication. The book begins with a short overview that introduces you to the
technologies that make up replication. In the following chapters, the book will walk you
through setting up different replication scenarios. All hands-on exercises are designed
with security best practices in mind. When you're finished working through the exercises,
you will be able to implement your own multi-server replication setup while following
the principle of least privilege (http://en.wIkIpedIa.org/wIkI/prIncIpLe_of_LeaSt_prIvILege).1

1

http://en.wikipedia.org/wiki/Principle_of_least_privilege

14

Chapter 1: Overview of SQL Server Replication

Chapter 1 gives a high level overview of the different components that together make up
SQL Server Replication. All the terms that you will encounter throughout the book, such
as Publisher and Subscriber, are introduced and explained here. This chapter also gives a
small glimpse outside of the boundaries of this book by introducing replication terms
such as Queue Reader Agent that we won't cover in later chapters.

Chapter 2: Configuring a Basic Replication Setup

Chapter 2 gives a quick run-through of a very basic replication setup involving only
a single server. The purpose of this chapter is to get you up and running as quickly as
possible, so you can get a feel for the power of SQL Server Replication. For that, we'll be
taking a few shortcuts that you will rarely encounter in a real-life setup. While walking
through these exercises, you will get a better understanding of the three main parts of any
replication setup: The Publisher with its publication, the Distributor, and the Subscriber
with its subscription.

Chapter 3: The Role of the Distributor

The most important and most undervalued component of SQL Server Replication is the
Distributor. In many real-world setups, the Publisher gets tasked with also playing the
role of the Distributor. However, this can cause a significant overhead on the Publisher,
particularly if you have published a very busy database, or if you have many Subscribers.
Chapter 3 will show you how to set up the Distributor as a stand-alone system, allowing
for the least amount of additional load on both the Publisher and the Subscriber. You will
also learn about the most important settings that are provided by the Distributor and
their impact on your replication setup.

15

Chapter 4: Transactional Replication – the Replication Agents

Replication is executed by a set of processes that are not part of the SQL Server core
itself. These processes are called replication agents. While they are usually executed with
the help of SQL Server Agent, it is important to understand that they are independent of,
not related to, the latter. Chapter 4 gives an overview of the agents that are involved in
transactional replication.

Chapter 5: Transactional Replication – the Publication

The publication is the part of replication that defines what part of the data is made
available to others. Chapter 5 provides a detailed walk-through of setting up a publi-
cation for transactional replication. You will learn about articles and filters. We will also
touch on article properties, which allow you to fine-tune the behavior of a single article.
This is also the first chapter that will look at security and the principle of least privilege.
You will learn how to apply this principle to the replication agents that are defined by
the publication.

Chapter 6: The Publication Access List

Chapter 6 is all about security. Here you will encounter the Publication Access
List and learn how it controls who can access your publication, for example, to
create a subscription. While it is written in the context of transactional replication,
everything covered here works the same way for merge replication, so be sure not to
skip this chapter.

16

Chapter 7: Transactional Replication – the Subscription

Chapter 7 walks you through the steps involved in setting up a subscription to your
publication. You will learn about the differences between pull and push subscriptions and
when one might better suited to your needs than the other. This chapter also covers the
access control aspects of setting up a subscription.

Chapter 8: SQL Server Agent Jobs for Transactional Replication

By default, SQL Server Replication makes extensive use of SQL Server Agent jobs.
Chapter 8 shows all jobs that are created for transactional replication and explains the
purpose of each one.

Chapter 9: Merge Replication – the Replication Agents

Most of the preceding chapters are geared towards transactional replication. The next few
chapters (9 to 12) cover merge replication. Before you read on, make sure you have read
Chapter 3: The Role of the Distributor and Chapter 6: The Publication Access List.

Similar to transactional replication, merge replication is driven by a set of replication
agents. Chapter 9 covers those agents and explains how merge replication differs from
transactional replication.

Chapter 10: Merge Replication – the Publication

Like transactional replication, merge replication requires that you set up a publication
first. Chapter 10 walks you through the steps of creating a merge replication publication.
As in Chapter 5, we will also cover the security settings that you need to know about
when setting up your own publication.

17

Chapter 11: Merge Replication – the Subscription

Chapter 11 shows how to set up a subscription for merge replication. In addition to
selecting a push or pull subscription model as covered in Chapter 7, merge replication
requires that you also pick between a client and a server subscription. This chapter shows
how all these selections can be done. And, as before, you will learn how to tighten security
around the merge replication agents.

Chapter 12: Merge Replication – Conflicts

Merge replication is designed to be used in an environment in which the data on each
of the connected systems might be changed. New data might be loaded into the publi-
cation database while, at the same time, updates to the existing data are applied at the
Subscribers. Merge replication will synchronize all those changes bi-directionally across
all servers, Publisher and Subscribers alike. However, in any bi-directional synchroni-
zation system, conflicts can occur when the same piece of data is changed in more than
one place between two synchronizations.

Chapter 12 details how merge replication deals with such conflicts either automatically
or by soliciting human intervention.

Chapter 13: Replication Monitor

SQL Server Replication is made up of many components that work together to provide
the desired functionality. With so many pieces involved, there are many things that can
go wrong. The SQL Server Replication Monitor provides an easy means to see if your
setup is working as desired, or if any components need attention.

Chapter 13 introduces this tool and shows where to find the pertinent information for
your Publication or Subscription.

18

Chapter 14: Troubleshooting

Chapter 14 shows how to troubleshoot a replication setup that is not working as
designed. It is based on an example setup in which the account security is completely
messed up. This example demonstrates where the difficulties in diagnosing replication
problems lie. It points to the shortcomings of the Replication Monitor and shows how
to find the information required for fixing the problem. It also touches on problems you
might encounter later, such as an update conflict in a transactional replication setup, and
shows where to find further information to help troubleshoot those problems.

The Book's Intended Audience

If you're new to replication, or you just inherited a replication setup and want to under-
stand the process better, this book is for you. You'll be introduced to various replication
concepts and shown how the different components work. This book is not intended for
people already well versed in SQL Server replication. For example, we do not cover such
specialized topics as peer-to-peer replication, manually scripting replication creation
scripts, or setting up topologies such as insert-only replication.

System Requirements

This book shows how to set up a real life replication scenario. As those rarely live on a
single SQL Server instance, most of the examples and exercises in this book require three
separate servers with their own SQL Server instance installed on them. While you can
follow many examples using just one instance or multiple instances on a single server,
you will get most out of the exercises if you follow them exactly and use three separate
machines. Those machines should live in the same domain, but if you don't have access
to a domain controller, you can still follow the examples by creating the required user
accounts on all three machines instead of just the domain controller.

19

Finally, as this book is about SQL Server 2012 Replication, you need an instance of
that SQL Server version on each of your machines. You can use the Standard, BI,
Enterprise or Developer edition of SQL Server. (The Subscriber could also be the Web
or the Express edition.)

The easiest way to get those machines is to open an account with Amazon AWS or
Microsoft Azure and create four Windows virtual machines, one as the domain controller
and three for the SQL Server instances. You can then install SQL Server as a trial version
on each of them. That gives you half a year to work through this book. If you go down
this route, make sure to shut down the machines every time you have to step away for
an extended time period, as you will be charged for each hour during which the virtual
machines are running.

Feedback, Errata and Code Download

We've done our very best to ensure that this book is accurate and that we've presented
the concepts as clearly as possible. If you have suggestions for improvements, or if we've
erred in some way, we'd love to hear about it. Please post all feedback and errata to the
following URL:
https://www.simple-talk.com/books/sql-books/fundamentals-of-sql-server-2012-
replication-by-sebastian-meine/ 2

At the same location, you will find a link to the code download file, containing the scripts
used throughout the book to demonstrate the techniques for working with SQL Server
replication in its various forms.

2

http://bit.ly/1cIDFNF
http://bit.ly/1cIDFNF

20

Chapter 1: Overview of SQL Server
Replication

Main Entry: rep-li-ca-tion
Pronunciation: \ r̩e-plǝ-̍ kā-shǝn\
Function: noun
Date: 14th century

The word replication comes from the Latin word replicare, which means to repeat.
Replication describes the process of reproducing or duplicating (http://www.merriam-
webster.com/dictionary/replication1 and Chambers Dictionary of Etymology,
Chambers, 1999).

Replication in SQL Server does exactly that; it reproduces or duplicates data. You can use
replication any time you need to create a copy of your data. That copy can exist in the
same database as the source data, in a different database on the same instance, or in a
database on a separate instance or server.

But SQL Server replication is about more than just copying data. You can set up repli-
cation to continuously synchronize the source data with the copied data or set it up to
synchronize the data at scheduled intervals. Plus, replication supports both one-way and
bi-directional synchronization, and lets you keep several datasets in sync with each other.

In this chapter, we look at how you can use SQL Server replication to synchronize your
data across multiple SQL Server instances. We also cover some of the possible scenarios
in which you can use replication. In addition, we examine the components that make up
SQL Server replication and show how they work together to allow you to replicate your
data and your data changes. Finally, we review the different types of replication and how
they use the components in a replication setup.

1

http://www.merriam-webster.com/dictionary/replication
http://www.merriam-webster.com/dictionary/replication

21

Chapter 1: Overview of SQL Server Replication

Putting SQL Server Replication to Work

There are several scenarios in which using SQL Server replication is a good choice. For
example, you can use replication to copy your data to a different machine in order to
support ad hoc reporting or to provide a source for an Analysis Services cube. Using
replication in this way offers two main benefits. First, you're separating your expensive
reporting queries from your online transaction processing (OLTP), keeping the write-
intensive OLTP load on one system and the read-intensive reporting load on the other.

The second benefit comes from the fact that replication can be scheduled to run at
certain intervals. For example, you can run replication nightly to provide a data snapshot
to the reporting environment. As a result, your reports will contain data from completed
days only, rather than containing data from a part of a day. That means you don't have to
build extra logic into your system to deal with today's incomplete data.

On the other hand, you can set up transactional replication to transfer data in near
real-time to your reports. Although SQL Server doesn't offer synchronous replication,
there is usually only a short delay for changes in the source data to show up in the repli-
cated data. Of course, latency depends on a lot of factors, but most of the time it is in the
range of only a few seconds.

A second scenario in which replication is often utilized is that of a traveling sales force.
Salespeople usually carry their own laptops, which can contain important company data,
and they often update that data throughout the day. The new information is then fed
into the database back at headquarters. Because the laptops are often not connected, a
continuous replication setup is not an option. What further complicates the issue is that
the same data can sometimes be updated in different places, creating conflicts that must
be resolved. With merge replication, SQL Server provides a replication topology that was
built for exactly this type of scenario.

22

Chapter 1: Overview of SQL Server Replication

Replication can also be used for data archival and high availability (HA) purposes. You
can, for example, maintain a copy of your complete database on a second server and
automatically keep it in sync with the main database. You can even combine your HA
standby server and database copy with your reporting server and database, saving on
hardware and licensing costs. Before SQL Server 2012, this was the only way to maintain a
synchronized copy of your database that was accessible for read requests.

However, SQL Server 2012 introduced the Always-On feature, which combines
clustering and mirroring into one flexible HA solution. Always-On lets you maintain a
one-to-one copy of your database (or database group) that is automatically kept in sync
with the master copy. This feature utilizes technology that was introduced with the
snapshot isolation levels in SQL Server 2005 to provide read-only access to the secondary
databases. It also allows the synchronization to be either synchronous, to maximize
protection, or asynchronous, to reduce the impact on the primary database.

With the Always-On feature, you can also implement more than one secondary server.
For example, you might set up your first secondary server in the same datacenter as the
primary server. You can configure the secondary server to be updated synchronously for
fast failover. You might then implement another secondary server in a remote location
(such as across the ocean) to ensure maximum disaster recoverability. This one you can
configure to be updated asynchronously to minimize the impact on the main database.

What all this means is that, if your goal is to create an exact copy of the database, repli-
cation in SQL Server 2012 is not necessarily the way to go because Always-On offers
advantages such as synchronous data transfer and the guarantee that the two databases
are identical.

On the other hand, if your goal is not to have a one-to-one copy, replication offers a lot
more flexibility. You can replicate just a subset of tables. You can even filter out rows.
You can have two subscriptions of publications in separate databases write to the same
database, thereby collecting data from different sources into one place. You can also
synchronize multiple data sources bi-directionally, allowing for data to change in more

23

Chapter 1: Overview of SQL Server Replication

than one place. Finally, you can even do things such as change the replicated data on the
fly or replicate only data inserts and updates, while ignoring deletes.

SQL Server can replicate data from one database to another database on the same server
or on another server. That second server can be in the same building or on the other side
of the world. SQL Server also allows you to replicate data to and from other database
management systems such as Oracle.

Replication Components

Replication requires a number of components to work properly. Figure 1-1 provides a
high-level overview of the pieces involved in a replication setup.

 Figure 1-1: The components that make up a replication setup.

24

Chapter 1: Overview of SQL Server Replication

The components in the replication setup shown in Figure 1-1 include a Publisher and its
publication database. The publication database contains a publication that includes two
articles. The setup also includes a Distributor and its distribution database as well as a
Subscriber and its subscription database, which contains the subscription. Finally, the
setup includes the replication agents necessary to drive these processes. (A replication
setup also includes a few maintenance jobs, but they are not displayed in Figure 1-1.)

Let's dig deeper into each of these components.

Articles

For each SQL Server object that should be replicated, an article needs to be defined. Each
article corresponds to a single SQL Server object. For example, in Figure 1-1, the tables
dbo.tbl_3 and dbo.tbl_4 are the articles.

The objects that are replicated most often are tables, views, and stored procedures. (For
a complete list of objects that can be replicated, check out the topic, Publishing Data and
Database Objects in SQL Server Books Online.)

An article's properties determine whether that article contains the entire object or a
filtered subset of its parts. For example, an article can be configured to contain only some
of the columns of a table.

With some restrictions, multiple articles can be created on a single object.

Publications

A publication is a collection of articles grouped together as one unit. In Figure 1-1, the
dotted circle that surrounds the two articles represents the publication.

25

Chapter 1: Overview of SQL Server Replication

Every article is defined to be part of exactly one publication. However, you can define
different articles on the same object in separate publications.

A publication supports several configurable options that apply to all its articles. Perhaps
the most important option is the one that lets you define which type of replication to use.

Publication database

Any database that contains objects designated as articles is called a publication database.
When you set up a publication on a database, SQL Server modifies the inner workings of
that database and creates several replication-related objects. A publication database is also
protected against being dropped.

A publication can contain articles from a single publication database only.

Publisher

The Publisher is the SQL Server instance that makes a publication available for repli-
cation; however, the Publisher itself doesn't actually have an active role in a replication
setup. After the publication is defined, the Distributor and sometimes the Subscriber do
all the heavy lifting.

The entire left-most column in Figure 1-1 represents the Publisher with its publication
database, publication, and two articles.

26

Chapter 1: Overview of SQL Server Replication

Distributor

Each Publisher is linked to a single Distributor. The Distributor is a SQL Server instance
that identifies changes to the articles on each of its Publishers. Depending on the repli-
cation setup, the Distributor might also be responsible for notifying the Subscribers that
have subscribed to a publication that an article has changed. The information about these
changes is stored in the distribution database until all Subscribers have been notified or
the retention period has expired.

The Distributor can be configured on a SQL Server instance separate from the Publisher,
but often the same instance takes the role of the Publisher and the Distributor.

In Figure 1-1, the top part of the center column is the Distributor. There are no table
details shown because you don't usually have to directly access a replication's internal
objects.

Distribution databases

Each Distributor has at least one distribution database. The distribution database
contains a number of objects that store replication metadata as well as replicated data.

A Distributor can hold more than one distribution database; however, all publications
defined on a single Publisher must use the same distribution database.

27

Chapter 1: Overview of SQL Server Replication

Subscriber

Each SQL Server instance that subscribes to a publication is called a Subscriber. The
Subscriber receives changes to a published article through that publication. A Subscriber
does not necessarily play an active role in the replication process. Depending on the
settings selected during replication setup, it might receive the data passively.

In Figure 1-1, everything related to the Subscriber is displayed in the right-hand column.
Here you can find the subscription database and the subscription, which is represented by
the dotted circle that surrounds the two replicated articles.

Subscriptions

A subscription is the counterpart of the publication. Each subscription creates a link, or
contract, between one publication and one Subscriber.

There are two types of subscriptions: push subscriptions and pull subscriptions. In a
push subscription, the Distributor directly updates the data in the Subscriber database. In
a pull subscription, the Subscriber asks the Distributor regularly if any new changes are
available, and then updates the data in the subscription database itself.

Subscription databases

A database that is the target of a replication subscription is called a subscription
database. As in the case of the publication database, SQL Server modifies the
subscription database during the first initialization. The most obvious change is the
addition of a few replication-related objects. However, unlike publication databases,
SQL Server doesn't prevent a subscription database from being dropped.

28

Chapter 1: Overview of SQL Server Replication

Replication agents

The replication processes are executed by a set of replication agents. Each agent is an
independent Windows executable responsible for one piece of the process of moving the
data. In a default installation of replication, each agent is executed by its own SQL Server
Agent job. Most of those agents usually run on the Distributor, although some can run
on the Subscriber. The Publisher houses replication agents only when the Publisher and
Distributor are the same instance.

Instead of relying on the SQL Server Agent, you can execute any replication agent
manually or by some other scheduling means. However, in most cases, these approaches
provide little advantage and often make troubleshooting more complex.

The following sections briefly introduce each replication agent type. The replication
agents are described in more detail in later chapters.

Snapshot Agent

In all replication topologies, the Snapshot Agent provides the data required to perform
the initial synchronization of the publication database with the subscription database.
Transactional replication and merge replication use other agents to keep the data in sync
afterwards. For both topologies, replication will use the Snapshot Agent again (after the
initial synchronization) only when you request a fresh resynchronization.

Snapshot replication, on the other hand, uses the Snapshot Agent exclusively to replicate
data. It works by copying all the data every time from the publication database to the
subscription database.

29

Chapter 1: Overview of SQL Server Replication

Log Reader Agent

The Log Reader Agent reads the transaction log of the publication database. If it finds
changes to the published objects, it records those changes to the distribution database.
Only transactional replication uses the Log Reader Agent.

Distribution Agent

The Distribution Agent applies the changes recorded in the distribution database to the
subscription database. As with the Log Reader Agent, only transactional replication uses
the Distribution Agent.

Merge Agent

The Merge Agent synchronizes changes between the publication database and the
subscription database. It is able to handle changes in both the publication database and
the subscription database and can sync those changes bi-directionally. A set of triggers in
both databases support this process. Only merge replication uses the Merge Agent.

Queue Reader Agent

The Queue Reader Agent is used for bi-directional transactional replication.
Bi-directional transactional replication is an advanced topic that won't be covered in
this book. For more information, see the topic, Replication Agents Overview, in SQL Server
Books Online.

30

Chapter 1: Overview of SQL Server Replication

Replication maintenance jobs

In addition to the SQL Server Agent jobs that run the replication agents, a replication
setup includes a few additional jobs that are responsible for cleaning up old data and for
other monitoring and maintenance tasks.

How Terms Are Used

Not surprisingly, you'll find the terms Distributor, Publisher, and Subscriber used
throughout this book. Each one always refers to a SQL Server instance together with
the machine it is on. So if you see the phrase "database on the Subscriber," it refers to a
database on the instance that plays the role of the Subscriber. If you see the phrase "file on
the Distributor," it describes a file on the machine that hosts the instance of SQL Server
that is used as a Distributor.

The databases that participate in replication are referred to as the publication database,
distribution database, and subscription database, depending on the role each plays in the
replication context. Each lives on its respective SQL Server instance.

Be aware that a single SQL Server instance can play more than one role in the replication
context. For example, the Publisher and the Distributor are often the same instance.

Publication, distribution, and subscription are logical replication concepts rather than
physical objects; they are not referring to database objects or databases. Instead, you will
find a phrase such as "a table that is part of the publication." For more detailed definitions,
refer back to the previous section.

A replication agent is always called an Agent, and a SQL Server Agent job is always called a
job, so the term, Distributor never refers to a Distribution Agent or the SQL Server Agent
job that is used to execute the Distribution Agent. Rather, the term always refers to an
instance of SQL Server or to the machine running that instance.

31

Chapter 1: Overview of SQL Server Replication

Replication Types

SQL Server supports three types of replication: snapshot, transactional, and merge
replication. There is also peer-to-peer replication, which is transactional replication with
a few enhancements that allow for bi-directional updates.

Snapshot replication

Snapshot replication creates an identical copy of the replicated objects and their data each
time it runs. There is no synchronization capability available for snapshot replication;
subsequent executions always copy the entire dataset again, overwriting any external
changes that might have been applied to the target database.

Snapshot replication uses SQL Server's bcp utility to write the contents of each table into
the snapshot folder. The snapshot folder is a shared folder set up on the Distributor when
replication is configured. Each component that participates in snapshot replication needs
to have access to the snapshot folder.

Every time snapshot replication runs, all articles and their data are again copied from
scratch, which can require significant bandwidth and storage resources. During their
initial setup, all other replication types use, by default, a single replication snapshot to
sync the Publisher to its Subscribers.

Snapshot replication is rarely used by itself and therefore will not be covered further.
However, its mechanisms are an integral part in the initialization process of the
other replication types, so you will see it being mentioned in several places
throughout the book.

32

Chapter 1: Overview of SQL Server Replication

Transactional replication

Transactional replication copies data uni-directionally from the source database to
the target database. This replication type uses the log files associated with the source
database to keep data in sync. If a change is made to the source database, that change can
be immediately synced to the target database, or the synchronization can be scheduled.
Transactional replication, however, is sensitive to external changes to the target database.
Any such change can potentially break replication so, for all intents and purposes,
the target database should be considered read-only. There are exceptions to this rule,
however. For example, you can modify objects in the target database that are not part of
the replication setup.

Transactional replication works, as the name suggests, on a transaction basis. The Log
Reader Agent scans the transaction log of the publication database and examines each
committed transaction to determine whether any changes affect the replicated articles.
If they do, those changes are logged to the distribution database. The Distribution Agent
then replicates those changes to the Subscriber.

Transactional replication allows for close to real-time synchronization and leaves only
a small footprint on the Publisher. There are several options to allow for bi-directional
data movement in transactional replication, as in the case of peer-to-peer replication.
However, uni-directional transactional replication is the most commonly used form, and
we will not cover the other forms in this book.

For transactional replication to work, every table you want to publish must be configured
with a primary key.

Merge replication

Merge replication allows two or more databases to be kept in sync. Any change applied to
one database will automatically be applied to the other databases – and vice versa.

33

Chapter 1: Overview of SQL Server Replication

Merge replication was designed to allow for data changes on the Publisher as well as the
Subscriber, but merge replication also allows for disconnected scenarios. For example, if
a Subscriber is disconnected from a Publisher during part of the day, the Subscriber and
Publisher are synchronized when they are reconnected.

The Merge Agent is responsible for synchronizing the changes between the Publisher and
its Subscribers. It utilizes a set of triggers to identify articles that have changed and to
record those changes.

Because data can be modified on both the Subscriber and Publisher, it's possible for a row
to be updated in two different places at the same time, which can result in data being
in conflict. Merge replication comes with several built-in options to help resolve such
conflicts.

Merge replication identifies rows across the different servers by using a uniqueiden-
tifier column with the ROWGUIDCOL property set and a unique constraint defined on
that column. If you publish a table that does not have such a column already, a properly
configured uniqueidentifier column will be added automatically.

Summary

In this chapter, you learned about the basic components that make up SQL Server
replication. Objects in a publication database that are marked for replication are called
articles. Articles are grouped together into publications. If changes occur to those articles,
the changes are propagated to the Subscriber, as defined by a subscription. The data
flows through the distribution database, which resides on the Distributor. The Publisher,
Distributor, and Subscriber can be on the same SQL Server instance or on separate
instances, either on the same or on different machines. The source and the target
database can be the same (if the Publisher and Subscriber are on the same SQL Server
instance), but the distribution database has to be separate from the others.

34

Chapter 2: Configuring a Basic
Replication Setup

The best way to get a feel for how SQL Server replication is implemented and how it
works is to see it in action. In this chapter, we perform a set of exercises that walk you
through a simple replication setup. The exercises demonstrate how to configure repli-
cation to copy a single table from one database to another database. To keep this setup
simple, we'll use transactional replication and a single SQL Server instance to play the
roles of Publisher, Distributor, and Subscriber. We'll also create the two publishing and
subscribing databases as part of the exercises.

To set up replication, you must configure the Distributor and create a publication and a
subscription. The easiest way to perform these tasks is by using SQL Server Management
Studio (SSMS). It's possible instead to use Transact-SQL scripts to set up and control
replication. In fact, some advanced options necessitate the use of scripts. However,
even the simplest setup requires a set of stored procedures that, together, have over 200
non-optional parameters. So it makes sense to start out by using SSMS. (A discussion of
these stored procedures is beyond the scope of this book. For information about them,
refer to SQL Server Books Online.)

The exercises in this chapter were developed on a single SQL Server 2012 instance.
However, you can also follow these steps on a SQL Server 2005, 2008, or 2008 R2
instance.

35

Chapter 2: Configuring a Basic Replication Setup

Setting Up the Distributor

The Distributor lies at the core of transactional replication. It must be available when you
set up the other components, so you need to configure it first. Although the Distributor
can reside on its own SQL Server instance, often the Publisher and the Distributor are set
up on the same machine. This is called the local distributor model and it is what we'll do in
this first exercise.

The following steps walk you through the process of creating the Distributor:

1. Open SSMS and connect to the SQL Server instance that you want to use.

2. In Object Explorer, right-click the Replication folder (listed beneath the
server/instance name), and click Configure Distribution, as shown in Figure 2-1.

Figure 2-1: Launching the Configure Distribution Wizard.

36

Chapter 2: Configuring a Basic Replication Setup

After clicking Configure Distribution, the first page of the Configure Distribution
Wizard appears (shown in Figure 2-2). The page provides general information about
setting up a Distributor.

Figure 2-2: Opening page of the Configure Distribution Wizard.

The Configure Distribution Wizard has two purposes. First, it lets you set up a SQL
Server instance to be a Distributor. Second, it lets you select an existing Distributor to
be used when setting up a Publisher. When using the local distributor model, these two
steps occur with one execution of the wizard. Later chapters will provide more details
about these two actions and their implications.

37

Chapter 2: Configuring a Basic Replication Setup

3. You can select the Do not show this starting page again option if you don't want the
page to appear when you start the wizard. Or you can ignore the option and simply
click Next to go to the next page.

4. On the Distributor page (shown in Figure 2-3), you can choose to set up the current
instance to be a Distributor or select another instance that's already been configured
as a Distributor.

 Figure 2-3: Selecting the server that will be used as the Distributor.

Because you'll be installing the Distributor on this SQL Server instance, leave the default
settings, and click Next.

38

Chapter 2: Configuring a Basic Replication Setup

5. If the SQL Server Agent is not set up to start automatically with the operating
system, you'll get an additional page here that lets you change SQL Server Agent's
configuration. That page, SQL Server Agent Start, is shown in Figure 2-4.

 Figure 2-4: Warning that SQL Server Agent is not set to start automatically.

To be able to select the Yes option, the SQL Server service account needs to have adminis-
trative privileges in Windows. However, because this is not a recommended security best
practice, you most likely will not be able to select the Yes option so, if this page appears,
take it as a warning, then select the No option, and adjust the setting manually.

For our exercises to work, it's not necessary that the SQL Server Agent be set to auto-
start. However, it will need to be running, so this is a good place to start the SQL Server
Agent service if needed.

39

Chapter 2: Configuring a Basic Replication Setup

After you're finished on the SQL Server Agent Start page, click Next.

6. On the Snapshot Folder page (shown in Figure 2-5), you specify the location for the
snapshot folder. The snapshot folder is used during the initial synchronization of
transactional replication and needs to be large enough to hold all the replicated data.
You can place the snapshot folder in any location on your machine or your network.
For performance reasons, it makes sense to create a network share on the Distributor.
The example shown in Figure 2-5 uses \\SQL0\ReplDataS12A.

Figure 2-5: Specifying the snapshot folder.

When you set up the snapshot folder, you must also ensure that the appropriate rights
have been granted on that folder. To keep this example simple, simply grant write access
to the Authenticated Users group, as shown in Figure 2-6. Note, however, that this
approach is not a recommended security best practice, and you should grant this access
only for the purposes of these exercises.

40

Chapter 2: Configuring a Basic Replication Setup

Figure 2-6: Granting access to the snapshot folder.

In addition, you must ensure that file sharing has been enabled on the snapshot folder
and that read access to that share has been granted to the Everyone group, as shown in
Figure 2-7. In a later chapter, you'll learn more about how to tighten security in this area.
(To keep this entire exercise simple, there are a few other places in this chapter where you
will select options that are not security best practices. All those will be tightened up in
later chapters as well.)

41

Chapter 2: Configuring a Basic Replication Setup

Figure 2-7: Granting access to the snapshot folder share.

If these folder security settings are not set up correctly, you'll have to deal with silent
failures, that is, failures that don't generate obvious or even easy-to-find error messages,
so double-check that you got them right. There are no completely silent errors in repli-
cation. However, sometimes everything looks fine at first glance and you have to really
dig to see that there is a problem.

42

Chapter 2: Configuring a Basic Replication Setup

After you've set up your snapshot folder and its share, click Next on the Snapshot Folder
page of the Configure Distribution Wizard. This takes you to the Distribution Database
page, shown in Figure 2-8.

Figure 2-8: Creating the distribution database.

7. Specify the name of the distribution database and the folders where the data and
log files should be located. The distribution database will be created based on these
parameters. Be aware that this step will fail if a database with the selected name
already exists.

After filling in the three fields, click Next to advance to the Publishers page, shown in
Figure 2-9.

43

Chapter 2: Configuring a Basic Replication Setup

Figure 2-9: Enabling Publishers to use this Distributor.

8. On the Publishers page, you specify the Publishers that should have access to the
Distributor. Every SQL Server instance that you want to set up as a Publisher and
that is going to use this Distributor needs to be added to this list. Note, however, that
being on a Distributor's access list does not make a server a Publisher. It merely grants
the server access to that Distributor.

You will always find the local instance preselected in this list. That is due to the fact that
a SQL Server instance that is set up to be a Distributor can use only itself as a Distributor
for publishing. Therefore the wizard automatically suggests the local instance to be
a Publisher on this list. Because we're actually going to use the local instance as our
Publisher, you can leave the default setting.

Click Next to advance to the Wizard Actions page, shown in Figure 2-10.

44

Chapter 2: Configuring a Basic Replication Setup

Figure 2-10: Configuring the Wizard Actions page.

9. On the Wizard Actions page, you choose whether you want the wizard to execute
your selections immediately or whether you want the wizard to create a script that
you can execute at a later time. Ensure that the Configure distribution option is
selected, and then click Next to move on to the Complete the Wizard page, shown in
Figure 2-11.

45

Chapter 2: Configuring a Basic Replication Setup

Figure 2-11: Reviewing your configuration options.

10. Review your configuration options, and then click Finish to create your Distributor.

As the wizard is creating the Distributor, it displays the Configuring page, shown in
Figure 2-12. Here you'll find information about the wizard's progress as it works through
each step.

46

Chapter 2: Configuring a Basic Replication Setup

Figure 2-12: Reviewing the execution status.

After the wizard has created the Distributor, the Configuring page should show that the
process has been successful. If the process was not successful, that information will be
displayed instead.

47

Chapter 2: Configuring a Basic Replication Setup

Setting Up a Publication

Once you've set up your Distributor, you can create a publication; however, before you
do that, you need a database containing a table to publish. So, before you start the next
exercise, execute the Transact-SQL script in Listing 2-1 to create a test database and table
for the publication.

USE MASTER;
GO
EXECUTE AS LOGIN = 'SA';
GO
CREATE DATABASE ReplA;
GO
USE ReplA;
GO
IF OBJECT_ID('dbo.Test') IS NOT NULL DROP TABLE dbo.Test;
GO
CREATE TABLE dbo.Test(
 Id INT IDENTITY(1,1) PRIMARY KEY,
 Data INT CONSTRAINT Test_Data_Dflt DEFAULT CHECKSUM(NEWID())
);

GO
INSERT INTO dbo.Test DEFAULT VALUES;
GO 1000
USE MASTER;
GO
REVERT;
GO

Listing 2-1: Creating a test database and table for the publication.

48

Chapter 2: Configuring a Basic Replication Setup

Now you're ready to set up your publication. The following steps walk you through
that process:

1. In Object Explorer, expand the Replication folder, right-click Local Publication, and
then click New Publication, as shown in Figure 2-13.

Figure 2-13: Launching the New Publication Wizard.

The welcome page of the New Publication Wizard appears and provides information
about creating a new publication, as shown in Figure 2-14.

49

Chapter 2: Configuring a Basic Replication Setup

Figure 2-14: The opening page of the New Publication Wizard.

You can select the Do not show this starting page again option if you don't want the
page to appear when you start the wizard. Alternatively, you can ignore the option and
simply click Next.

50

Chapter 2: Configuring a Basic Replication Setup

2. When the Publication Database page appears (shown in Figure 2-15), select the
ReplA database (the one you just created), and click Next.

Figure 2-15: Selecting the publication database.

51

Chapter 2: Configuring a Basic Replication Setup

3. On the Publication Type page (shown in Figure 2-16), you select the publication type,
which corresponds to the type of replication you're implementing. For this exercise,
select Transactional publication, and click Next.

Figure 2-16: Selecting the publication type.

52

Chapter 2: Configuring a Basic Replication Setup

4. On the Articles page (shown in Figure 2-17), you choose which articles should be
part of this publication. Notice that the Articles page includes the Objects to publish
pane. The pane lists the database objects hierarchically, similar to the way Object
Explorer in SSMS displays database objects. Also, notice that the dbo.Test table you
created earlier is included in that hierarchy. Select that table, and click Next.

Figure 2-17: Selecting the articles to include in your publication.

53

Chapter 2: Configuring a Basic Replication Setup

5. The next page in the wizard is Filter Table Rows (shown in Figure 2-18). Here you
define any filters that should be applied to your articles. You'll learn about filters in a
later chapter, so for now, skip this page by clicking Next.

Figure 2-18: Creating filters on a publication's articles.

54

Chapter 2: Configuring a Basic Replication Setup

6. On the Snapshot Agent page (shown in Figure 2-19), you specify when to run the
Snapshot Agent. The Snapshot Agent creates that initial snapshot that is used to start
the synchronization process. For this exercise, select the option Create a snapshot
immediately and keep the snapshot available to initialize subscriptions, and then
click Next.

Figure 2-19: Specifying when to run the Snapshot Agent.

55

Chapter 2: Configuring a Basic Replication Setup

7. On the Agent Security page (shown in Figure 2-20), you specify the account to use to
run the Snapshot Agent. For this exercise, you can use the SQL Server Agent account.
Click the Security Settings button to select that account.

Figure 2-20: Assigning a security account to the Snapshot Agent.

56

Chapter 2: Configuring a Basic Replication Setup

8. When the Snapshot Agent Security dialog box appears, select the option Run under
the SQL Server Agent service account, as shown in Figure 2-21.

 Figure 2-21: Selecting the security account for the Snapshot Agent.

57

Chapter 2: Configuring a Basic Replication Setup

9. Click OK to close the Snapshot Agent Security dialog box. You'll be returned to the
Agent Security page of the New Publication Wizard. Click Next to continue to the
Wizard Actions page, shown in Figure 2-22.

Figure 2-22: Choosing what happens when you click Finish.

58

Chapter 2: Configuring a Basic Replication Setup

10. On the Wizard Actions page, you choose whether you want the wizard to create the
publication immediately or to create a script you can execute at a later time. For this
exercise, ensure that the Create the publication option is selected, and then click
Next to move on to the Complete the Wizard page, shown in Figure 2-23.

Figure 2-23: Reviewing your configuration options.

59

Chapter 2: Configuring a Basic Replication Setup

11. In the Publication name text box, type MyFirstPublication, review your
configuration options, and then click Finish to create the publication.

As the wizard is creating the publication, it displays the Creating Publication page,
shown in Figure 2-24. Here you'll find information about the wizard's progress as it works
through each step of the process.

Figure 2-24: Viewing the execution status of the New Publication Wizard.

After the wizard has created the publication, the Creating Publication page should show
that the process has been successful. If the process was not successful, that information
will be displayed instead.

60

Chapter 2: Configuring a Basic Replication Setup

Setting Up a Subscription

The final step in setting up replication is to create the subscription. In most cases, the
subscription will be on a different machine from the Publisher, but there are scenarios
in which you want it to be on the same instance. To keep this exercise simple, you'll be
creating your subscription on the same instance as well. But first, you must create your
subscription database. To do so, use the Transact-SQL code in Listing 2-2 to create the
ReplB database.

USE MASTER;
GO
EXECUTE AS LOGIN = 'SA';
GO
CREATE DATABASE ReplB;
GO
REVERT;
GO

Listing 2-2: Creating the target database.

After you've created the database, you're ready to create your subscription. The following
steps walk you through that process.

61

Chapter 2: Configuring a Basic Replication Setup

1. In Object Explorer, expand the Replication folder if necessary, right-click Local
Subscriptions, and then click New Subscriptions, as shown in Figure 2-25.

 Figure 2-25: Launching the New Subscription Wizard.

62

Chapter 2: Configuring a Basic Replication Setup

2. The Welcome page of the New Subscription Wizard appears (shown in Figure 2-26)
and provides information about the wizard.

 Figure 2-26: Opening page of the New Subscription Wizard.

You can select the Do not show this starting page again option if you don't want the
page to appear when you start the wizard. Or you can ignore the option and click Next.

63

Chapter 2: Configuring a Basic Replication Setup

3. On the Publication page (shown in Figure 2-27), you select a publication you want
to associate with your subscription. The publications are listed hierarchically in the
Databases and publications pane. Select the publication you created in the previous
section, and then click Next.

 Figure 2-27: Selecting the publication for your subscription.

64

Chapter 2: Configuring a Basic Replication Setup

4. On the Distribution Agent Location page (shown in Figure 2-28), you specify
whether this is a push or a pull subscription. In this exercise, you'll create a push
subscription, which is the default setting. So all you need to do is to click Next.

 Figure 2-28: Choosing between a push or pull subscription.

65

Chapter 2: Configuring a Basic Replication Setup

5. On the Subscribers page (shown in Figure 2-29), you choose one or more Subscribers
and the subscription database associated with each one.

For this exercise, select your server and the ReplB database from the Subscription
Database drop-down list, and then click Next.

 Figure 2-29: Setting up the Subscriber.

66

Chapter 2: Configuring a Basic Replication Setup

6. The next screen is the Distribution Agent Security page (shown in Figure 2-30).
The Distribution Agent is responsible for moving the data from the distribution
database to the subscription database. To do so, it has to connect to the Distributor
and the Subscriber. On the Distribution Agent Security page, you specify a security
account for the Distribution Agent as well as connection details for the two required
connections.

 Figure 2-30: Configuring the Distribution Agent's security.

Click the ellipsis button on the right side of the first row in the Subscription properties
grid. This launches the Distribution Agent Security dialog box, shown in Figure 2-31.

67

Chapter 2: Configuring a Basic Replication Setup

 Figure 2-31: Selecting a security account for the Distribution Agent.

7. Select the option Run under the SQL Server Agent service account, and then
click OK. You're returned to the Distribution Agent Security page of the New
Subscription Wizard.

68

Chapter 2: Configuring a Basic Replication Setup

8. Click Next to continue to the Synchronization Schedule page, shown in Figure 2-32.

 Figure 2-32: Setting up the synchronization schedule.

69

Chapter 2: Configuring a Basic Replication Setup

9. In the first row of the Agent schedule grid, select Run continuously from the Agent
Schedule drop-down list, and then click Next to move on to the Initialize Subscrip-
tions page, shown in Figure 2-33.

 Figure 2-33: Initializing your subscription.

70

Chapter 2: Configuring a Basic Replication Setup

10. For this exercise, you want to initialize your subscription immediately, so use the
default settings, and then click Next to continue to the Wizard Actions page, shown
in Figure 2-34.

 Figure 2-34: Determining what actions the wizard should take.

71

Chapter 2: Configuring a Basic Replication Setup

11. Ensure that the Create the subscription(s) option is selected, and then click Next.
The Complete the Wizard page appears, as shown in Figure 2-35.

 Figure 2-35: Reviewing your configuration options.

72

Chapter 2: Configuring a Basic Replication Setup

12. Review the configuration options, and click Finish to create the subscription.

As the wizard is creating the subscription, it displays the Creating Subscription(s) page,
shown in Figure 2-36. Here you'll find information about the wizard's progress as it
creates the subscription.

 Figure 2-36: Viewing the execution status.

After the wizard has created the subscription, the Creating Subscription(s) page should
show that the process has been successful. If the process was not successful, information
to that effect will be displayed instead.

73

Chapter 2: Configuring a Basic Replication Setup

Success!

When you created the Test table in the ReplA database, you inserted 1,000 rows into it.
After the initial snapshot is transferred over to the subscription database, the Test table
in the ReplB database will also contain the same 1,000 rows.

A couple of minutes after you set up the Subscriber, you can run the script in Listing 2-3
to verify that replication pushed all the data to the Subscriber as expected. This script
joins the ReplA.dbo.Test and ReplB.dbo.Test tables to show which rows were
replicated correctly.

SELECT TOP (20)
 A.Id AS [ReplA.Id],
 A.Data AS [ReplA.Data],
 B.Id AS [ReplB.Id],
 B.Data AS [ReplB.Data]
FROM ReplA.dbo.Test A
FULL OUTER JOIN ReplB.dbo.Test B
 ON A.Id = B.Id
ORDER BY A.Id DESC;

Listing 2-3: Comparing data in the Publisher and Subscriber.

You can also run further tests of your own, such as inserting and updating rows in
ReplA.dbo.Test in order to watch the changes magically appear in ReplB.dbo.Test.

74

Chapter 2: Configuring a Basic Replication Setup

Summary

In this chapter, we worked through several exercises that stepped you through the process
of configuring a simple replication setup. In this case, our setup was a transactional
replication configuration. To keep the exercises simple, we configured our Distributor,
Publisher, and Subscriber on the same instance of SQL Server 2012. Chances are, in a
real-world scenario, you'll want to set up at least some of those components on
different instances and different servers. As we progress through the book, you'll see
how to do just that. In the meantime, you should now have a sense of how a basic
replication setup works.

75

Chapter 3: The Role of the Distributor

The Distributor is the core component in a SQL Server replication setup. The Distributor
controls and executes the processes that move the data from one server to another. SQL
Server comes with a set of Windows executables that carry out the processes that make
replication work. These programs are called replication agents. In a default setup of repli-
cation, most (or potentially all) replication agents run on the Distributor. The Distributor
also stores metadata about publications and subscriptions in the distribution database.

Distribution Components

A number of specific components are important to the Distributor and replication in
general. They include the distribution database, snapshot folder, and replication agents.
Although Chapter 1 covers these components, this chapter provides more details about
how they apply to the Distributor and the distribution process.

The distribution database

When you set up distribution, SQL Server creates a distribution database. The distri-
bution database is classified as a system database so, to find it in Object Explorer, you
need to drill down into the System Databases subfolder of the Databases folder. You can
access Object Explorer through SSMS.

You can install multiple distribution databases on a Distributor. If multiple Publishers
use the same Distributor, you can reduce contention if each Publisher uses a separate
distribution database. However, the selection of which distribution database to use is a
Publisher-wide setting, so different publications on the same Publisher must share the
same distribution database.

76

Chapter 3: The Role of the Distributor

The distribution database contains metadata about a Publisher's publications and their
articles. In addition, the database contains metadata about the progress and state of the
replication process. In the case of transactional replication, the database also contains
any Transact-SQL commands that were executed on the Publisher and that need to be
replicated. For each command, all the data necessary to re-execute that command is also
stored in this database.

Because of the amount of data that the distribution database must store, it can become
quite large, so make sure you have enough room on your hard drive to accommodate its
projected growth.

The size required for the distribution database is dependent on many factors. For
example, assume that our database includes the dbo.MyProc stored procedure, which
inserts data into seven tables published in a transactional replication setup. If the
procedure itself is published, the data needed to re-execute it on the Subscriber will
be stored in the distribution database. If, on the other hand, the procedure itself is not
published, or if the seven inserts get executed ad hoc by the application, each INSERT
statement with all the column values will be stored. Not surprisingly, this approach
requires a lot more space in the distribution database than the stored procedure, although
both approaches accomplish the same thing.

That means the distribution database size is affected by the number of statements, their
frequency, and the type of statements that are executed by your application to insert or
update data. Other factors affecting the size of the distribution database are the time it
takes to get the data to the Subscribers (latency) as well as the different retention times, as
we'll see later in the book.

77

Chapter 3: The Role of the Distributor

The snapshot folder

Although we don't cover snapshot replication in any detail in this book, it's important to
understand how the snapshot folder works. By default, the first initialization and data
synchronization of a replication setup, regardless of the replication type, utilizes the
mechanisms of snapshot replication. Any re-initialization also makes use of this infra-
structure. Because the snapshot folder lies at the heart of this process, it's important
to set it up correctly and plan for enough space on the drive.

The snapshot folder is used by snapshot replication to hold a snapshot of the replicated
tables. Every time snapshot replication runs, a snapshot of all the replicated tables is saved
to the snapshot folder. This is accomplished by using the SQL Server bcp utility.

The snapshot folder can be a share anywhere on the network. The snapshot folder can
also be an unshared local folder on the Distributor, but this significantly restricts other
available options, so we won't pursue this strategy any further. Going forward, we'll use
the term "snapshot folder" specifically to mean a folder that is accessible via a share over
the network.

The Windows account that is used to execute the Snapshot Agent needs to have write
permission on this folder, and most other agents need to be granted read access. Infor-
mation about setting up replication agent security is covered at the appropriate places
throughout the rest of the book.

The replication agents

By now, you should have a clear picture of what the term "replication agent" represents,
so let's quickly rehash the most important points. The SQL Server database engine does
not execute the replication process. In fact, the term "replication" actually refers a set of
technologies made up of components independent of the database engine. Many of those
components are the replication agents.

78

Chapter 3: The Role of the Distributor

If you follow the standard setup for replication, as described in this book, SQL Server will
create SQL Server Agent jobs that execute and control the replication agents. However,
you do not have to follow that pattern; the agents are independent executables, so you
can also execute them from the command line.

With the exception of a pull-subscription setup, all agents reside on the Distributor. For
pull subscriptions, the Subscriber executes its own Distribution Agent in order to pull the
data from the distributor. Chapter 7 explains pull subscriptions in more detail. Chapters 4
and 8 cover the roles of all the agents in more detail.

Best Practices

A replication setup often follows the local distributor model, in which all parts of the
Distributor live and run on the Publisher. This model is easier to implement than other
models; however, it takes a measurable toll on the Publisher's performance. If the impact
becomes too great, you should move distribution to its own server. With the Distributor
and all its processes on a separate machine, the impact on the Publisher is minimal.

If you have a lot of Publishers using the same Distributor, the distribution database
might become a bottleneck. To alleviate this, you should install one distribution
database per publishing SQL Server instance. This also significantly simplifies backup
and recovery planning.

Setting up Distribution

The exercises in this and the following chapters attempt to show security best practices
and point out the requirements for a full-scale installation of replication. To that end,
the exercises assume that the Publisher, Distributor, and Subscriber are three distinct
machines. If you plan to try out these exercises – and I encourage you to do so – you

79

Chapter 3: The Role of the Distributor

need to identify the three servers now. Although the exercises in this chapter are
concerned primarily with setting up the Distributor, some of the steps require actions
on the other machines.

Again, I encourage you to use three separate machines for these exercises. There are
several pages in the wizards that won't show if you're on a single machine. Also, to see
the difference between push and pull subscriptions, the Distributor and Subscriber must
be different machines. Finally, combining two or more machines can hide mistakes that
don't show up unless you set up replication on separate machines. To make sure you get
the most out of this and the following chapters, using three machines is indispensable.

Because most enterprise networks are set up with a Windows domain, we'll assume that
the three machines are part of a Windows domain. While it's possible to set up replication
outside of a domain, it is not recommended. This book will therefore not go into any
details on how that works. However, if you're forced to work outside of a domain, you
must ensure that each user account used for replication exists on every machine and is
configured with the same password, instead of existing just on the domain controller.

The rest of this chapter walks through how to set up a Distributor. We will go through
this setup in more detail than we did in Chapter 2. When you have completed the
exercises, you'll have prepared a SQL Server instance to act as a Distributor in a full-scale
replication setup. You will know what the different settings mean and how to set them
based on your requirements.

As you work through these exercises, you might notice that some of the screenshots seem
to be repeated from Chapter 2. Although we use some of the same interface components,
such as the Configure Distribution Wizard, we won't be using those components in
exactly the same way, so be aware that there are differences.

80

Chapter 3: The Role of the Distributor

Removing replication

To be able to follow along with the exercises in the next sections, you need to start with
SQL Servers on which replication is not yet installed. If replication has been set up on
any of your servers – maybe because you followed the steps in Chapter 2 – you need to
remove it now. However, before you continue, make sure that the existing replication
setup is not needed. It can be very time consuming to reconfigure a replication setup if
you've accidentally dropped it.

The easiest way to remove replication is to connect to the SQL Server instance in Object
Explorer and generate a script to delete replication, as described in the following steps:

1. Right-click the Replication folder and then click Generate Scripts, as shown in
Figure 3-1.

Figure 3-1: Launching the Generate SQL Script dialog box.

81

Chapter 3: The Role of the Distributor

This launches the Generate SQL Script dialog box (shown in Figure 3-2). Using this dialog
box, you can generate scripts that either create or delete replication components.

Figure 3-2: Creating a script to drop all replication components.

2. In the Script the commands section, select the option To drop or disable the
components.

82

Chapter 3: The Role of the Distributor

3. Select all available components that are listed. That means the Distributor, all
publications, and all subscriptions that are not grayed out.

4. At the bottom of the screen, click Generate Script, and then click Open in New
Query Window. A script is then generated that you can use to drop all the selected
replication components.

5. Run the script to delete the specified components.

If the setup you're trying to remove involves more than one SQL Server instance, you
have to repeat these steps for each instance. Start with the Subscribers, followed by the
Publishers, and finally the Distributor.

If any of the steps generate an error, make sure you're removing the instances in the
correct order, and then regenerate and run the new scripts. You'll need to regenerate
them because the previous run probably made changes to the setup.

In some cases, you might run into a particularly stubborn case in which you continue to
receive errors even if you've tried to regenerate the script. In such cases, try stopping all
the replication agents before running your scripts. (In a default replication setup, that
means stopping the SQL Server Agent jobs that run the replication agents.)

6. If you have a single server setup, such as the one described in Chapter 2, you might
have to manually delete any remaining orphaned subscription entries. In such cases,
right-click the subscription, and then click Delete, as shown in Figure 3-3.

When prompted to confirm your deletions, confirm that you're deleting the correct
object, and accept the changes accordingly.

83

Chapter 3: The Role of the Distributor

Figure 3-3: Dropping orphaned subscription entries.

84

Chapter 3: The Role of the Distributor

Setting up the Distributor

Once you've ensured that any previously installed replication components have been
removed from your SQL Server instances, you're ready to set up your Distributor. The
following steps walk you through the process of configuring a SQL Server instance as
the Distributor:

1. Open Object Explorer, if necessary, and connect to the SQL Server instance that you
plan to set up as your Distributor.

2. Right-click the Replication folder and then click Configure Distribution, as shown in
Figure 3-4.

 Figure 3-4: Launching the Configure Distribution Wizard.

85

Chapter 3: The Role of the Distributor

3. This launches the Configure Distribution Wizard. If the first page to appear is the
Welcome screen, click Next to go to the Distributor page (shown in Figure 3-5).

 Figure 3-5: Selecting the current SQL Server instance as the Distributor.

Because we're setting up the Distributor on the current SQL Server instance, select the
first option on the Distributor page, and then click Next.

4. The Snapshot Folder page appears and asks for the snapshot folder location, as
shown in Figure 3-6.

86

Chapter 3: The Role of the Distributor

Figure 3-6: Specifying the location of the snapshot folder.

Most processes that access the snapshot folder run on the Distributor. For this reason, it's
considered a best practice to create a network share on the Distributor itself. That gives
direct and therefore fast access to the local processes while also allowing for scenarios
such as pull subscriptions that require remote access. (Pull subscriptions are covered in
Chapter 7.)

Wherever you place the snapshot folder, make sure that the drive has enough room to
hold a bcp copy of all replicated tables. The details on who needs to have which type of
access to the snapshot folder are discussed in later chapters.

Enter the full path to the network share you want to use, and then click Next.

87

Chapter 3: The Role of the Distributor

5. The next page of the wizard is the Distribution Database page. Here, you provide
details about the distribution database, as shown in Figure 3-7.

 Figure 3-7: Providing details about the distribution database.

Depending on the number of Publishers using this Distributor, the number of articles
published and, most importantly, how often those articles change, the distribution
database can become quite large and busy. Follow the standard best practices for placing
and sizing busy databases when picking a location for the distribution database files.

While it's often a good idea to do so, the Configure Distribution Wizard does not allow
you to create multiple distribution databases. The section, Implementing multiple distri-
bution databases, later in the chapter, provides detailed information on why it might be a
good idea to have multiple distribution databases, and on how to set them up.

88

Chapter 3: The Role of the Distributor

Provide a name for the database and the folder locations for the data and log files, and
then click Next.

6. On the next page of the wizard, Publishers, you specify which servers can use the
Distributor when they become Publishers. Figure 3-8 shows the Publishers page.

 Figure 3-8: Registering a Publisher to use the Distributor.

Every Publisher needs to be registered with the Distributor. This page shows a list of all
registered Publishers. Because we're just setting up this Distributor, the list will contain
only the Distributor itself when the page first appears.

To enable the instance you selected as Publisher to use this Distributor, click the Add
button, and then select SQL Server Publisher in the drop-down list that appears. A
standard SQL Server Connect to Server dialog box appears and lets you pick your
publishing server instance. After you've connected to that instance, it will appear in the
list, as shown in Figure 3-8.

89

Chapter 3: The Role of the Distributor

For the Distribution Database option associated with the new Publisher, you’ll find that
the distribution database is automatically selected and you can't change it. You can find
more information about how to use multiple distribution databases later in this chapter.

There are a few other settings that are automatically selected as well. You can get to them
by clicking the ellipsis button at the end of the row that lists your Publisher. Chapter 5
provides more information about those settings.

7. After adding your Publisher, uncheck the Distributor itself, as this server will not be
used as a Publisher in this example.

Once you've added the Publisher and deselected the Distributor, click Next.

8. When you add a SQL Server instance that is not the Distributor, as you've just done,
the next page to appear in the Configure Distribution Wizard is the Distributor
Password page (shown in Figure 3-9).

 Figure 3-9: Providing a password for connecting to the Distributor.

90

Chapter 3: The Role of the Distributor

On this page, you specify the password that remote Publishers must use to access the
Distributor. Every time you set up a Publisher and connect it to the Distributor, you must
provide this password. Be sure to pick a secure password and store it somewhere safe.

Enter the password (twice), and then click Next.

9. The next few pages of the Configure Distribution Wizard are the finalizing pages
that you saw in Chapter 2. Be sure to select the Configure distribution option (on the
Wizard Actions page), review the configuration steps, and let the wizard do its magic.

Setting up distribution on the Publisher

In the previous section, you learned how to register the Publisher with the Distributor.
However, that step alone is not enough to set up distribution. You must also register the
Distributor with the Publisher, as outlined in the following steps:

1. In Object Explorer, connect to the SQL Server instance that you've designated as
your Publisher.

2. Right-click the Replication folder and then click Configure Distribution to open the
Configure Distribution Wizard. Refer back to Figure 3-4 if you're unsure about this
step.

3. When the wizard appears, skip to the Distributor page. Select the option Use the
following server as the Distributor, and then click the Add button.

4. A standard Connect to Server dialog box will appear. Select the SQL Server instance
that you set up as your Distributor in the previous exercise.

91

Chapter 3: The Role of the Distributor

5. When you're returned to Configure Distribution Wizard, the Distributor page
should look similar to what is shown in Figure 3-10. After you review the information,
click Next.

 Figure 3-10: Selecting a remote Distributor.

6. The next page in the Configure Distribution Wizard is the Administrative Password
page (shown in Figure 3-11).

92

Chapter 3: The Role of the Distributor

 Figure 3-11: Specifying the administrative password.

The password asked for here is the same password that we picked for the Distributor in
the previous exercise on the Distributor Password page.

Enter the password (twice), and then click Next.

7. The remaining pages let you pick whether the wizard should create a script or should
run the setup immediately. For this exercise, you should run the setup immediately.
You'll be able to review the steps that the wizard will take when performing that
setup. Once the wizard has completed running, the distribution setup is complete.

93

Chapter 3: The Role of the Distributor

Implementing multiple distribution databases

If you want to use one Distributor to support several Publishers, you should consider
creating a distribution database for each Publisher. This not only reduces contention on
each distribution database, but it can also improve your ability to troubleshoot problems
and recover from a disaster. The following steps describe how to create an additional
distribution database:

1. In Object Explorer, connect to the SQL Server instance that you've set up as
the Distributor.

2. Right-click the Replication folder, and then click Distributor Properties, as
shown in Figure 3-12.

Figure 3-12: Adding a distribution database.

94

Chapter 3: The Role of the Distributor

This will open the Distributor Properties dialog box. On the General page, you'll see a
list of the installed distribution databases.

3. Click the New button beneath the list of distribution databases. This opens the New
Distribution Database dialog box, shown in Figure 3-13.

 Figure 3-13: Adding a distribution database.

Here you specify the name and folder locations for the new distribution database. You
can also specify retention values, which are covered in Chapter 7. For now, leave these
retention options at their default values.

95

Chapter 3: The Role of the Distributor

4. Click OK to create the new distribution database, and then close the New Distri-
bution Database dialog box. You'll be returned to the Distribution Properties dialog
box, which will now list both distribution databases.

5. Switch to the Publishers page of the Distribution Properties dialog box.

6. Click the Add button, and then click Add SQL Server Publisher. A Connect to Server
dialog box appears (shown in Figure 3-14). This lets you register additional Publishers
with this Distributor.

 Figure 3-14: Registering Publishers with the Distributor.

96

Chapter 3: The Role of the Distributor

7. Select the SQL Server instance that you want to add as a Publisher. Then select an
authentication type and, if applicable, a login and password. Next, click Connect. The
Publisher will be added to the list of registered Publishers on the Publishers page of
the Distributor Properties dialog box.

8. In the row for the new Publisher, select the distribution database you want to use for
that Publisher from the Distribution Database drop-down list (next to the Publisher's
name), as shown in Figure 3-15.

 Figure 3-15: Picking the distribution database for the new Publisher.

97

Chapter 3: The Role of the Distributor

Make sure you select the correct database, because once you click OK, this selection
cannot be changed. The only way to change the distribution database for an existing
Publisher is to drop all publications on that Publisher and then delete the Publisher from
the list of registered Publishers on the Distributor. You’ll then need to set everything up
again. So make sure you select the right distribution database in the first place.

9. Click OK to close the Distributor Properties dialog box.

For more details on how to handle multiple distribution databases, check out
the SQL Server Central article, Scaling out the distribution database at
http://www.sqlservercentral.com/articles/Replication/69663/.1

Summary
In this chapter, we prepared a SQL Server instance to be a Distributor for replication.
We also prepared another SQL Server instance to use that Distributor. We will set up the
Publisher for transactional replication in Chapter 5, followed by a Subscriber in Chapter 7.

At this point, there is not much to see on the Distributor. None of the agents are
running yet, and nothing else will show any activity. Although there are now distribution
databases on the server, they're well hidden amongst the system databases.

The only visible change is to the context menu of the Replication folder in Object
Explorer. The menu now includes the Distributor Properties option, instead of
Configure Distribution. This might feel a little disappointing – spending so much effort
and having nothing to show for it. Keep in mind, however, that the Distributor is the
most important piece of a transactional replication installation. Without it, no data
would move anywhere. The reward for this work will come soon, so let's get started
setting up the Publisher.

1

http://www.sqlservercentral.com/articles/Replication/69663/

98

Chapter 4: Transactional Replication –
the Replication Agents

Once you've configured the Distributor, you're ready to set up the other replication
components. The way in which you configure them depends on the type of replication
you plan to implement. In the next few chapters, we'll examine how to set up transac-
tional replication. Before we get into the specific configuration details, however, you
should have an understanding of the main components that drive replication: the repli-
cation agents. This chapter explains how the replication agents are used in transactional
replication to carry out the various replication-related actions. Transactional replication
utilizes three different agents, and in this chapter we cover each one in detail.

Replication Agents

The SQL Server Database Engine does not carry out the tasks associated with executing
transactional replication. Instead, the replication process is driven by several external
services known as replication agents. Replication agents are Windows programs that
connect to the replication servers and facilitate data movement.

At first glance, there seems to be an overwhelming amount of moving parts required to
make transactional replication work. However, when you look more closely, you'll find
that there are really only three main players: the Snapshot Agent, the Log Reader Agent,
and the Distribution Agent. Figure 4-1 provides an overview of the three primary repli-
cation agents. (Bi-directional transactional replication also utilizes the Queue Reader
Agent, which applies changes made on a Subscriber to the Publisher. For more infor-
mation about the Queue Reader Agent, check out SQL Server Books Online.)

99

Chapter 4: Transactional Replication – the Replication Agents

Figure 4-1: Configuration of the replication agents used for transactional replication.

The arrows in the figure show how the replication agents work with the data. The arrows
indicate the direction of the data flow; the green arrows indicate read access, whereas the
red arrows indicate write access. For example, the Log Reader Agent reads data from the
publication database and writes data to the distribution database.

The Snapshot Agent and the Log Reader Agent reside on the Distributor. The Distri-
bution Agent, however, can live either on the Distributor or the Subscriber, depending on
whether the subscription has been set up to follow the push or the pull model. Let's take a
closer look at each of these agents to get a better sense of how they work.

100

Chapter 4: Transactional Replication – the Replication Agents

Snapshot Agent

The Snapshot Agent is the main player in snapshot replication. However, in transactional
replication as well as all other replication types, the Snapshot Agent performs the initial
synchronization of the replicated objects. Although this is not the only way to execute the
initial synchronization, it is certainly the most convenient way.

Generating a snapshot involves two steps. First, the Snapshot Agent generates the scripts
necessary to drop and create the replicated objects on the Subscriber. After that, the agent
uses the bcp utility to generate files that contain copies of the data from all the published
tables. The Snapshot Agent places the files in the snapshot folder and maintains a record
of each file in the distribution database.

If, after creating the snapshot, you run the SELECT statement shown in Listing 4-1
against the distribution database, you'll see that the MSRepl_commands table contains
one record for each file that was generated. (The table also contains records for other
replication-related activity, such as changes to the data, so don't be surprised to see a lot
of other records in there.)

SELECT publisher_database_id,
 xact_seqno,
 type,
 article_id,
 originator_id,
 command_id,
 partial_command,
 CAST(command AS NVARCHAR(MAX)) AS command_text,
 command,
 hashkey,
 originator_lsn
FROM dbo.MSrepl_commands;

Listing 4-1: Retrieving information from the MSRepl_commands table about the data files.

101

Chapter 4: Transactional Replication – the Replication Agents

During snapshot replication, SQL Server places a shared lock on the published tables
while the bcp utility generates the data files. This allows the Snapshot Agent to guarantee
transactional consistency of the data; however, it blocks other requests trying to write
to those tables while the locks are in place. Depending on the size of the tables, the time
it takes to create the snapshot can be substantial, but this is the only way to guarantee
transactional consistency in snapshot replication.

In transactional replication, the shared table locks are not required. Starting with SQL
Server 2005, if you set up transactional replication through SQL Server Management
Studio (SSMS), SQL Server uses a different method to generate snapshots. This method
allows changes to the published tables during the snapshot generation process.

When the process starts, SQL Server places a table lock on all tables involved in the publi-
cation and then writes a marker to the log file associated with the publication database.
The marker indicates the beginning of the snapshot process. Right after the marker is
written, SQL Server releases the locks. The Snapshot Agent then generates the bcp files
without taking further table locks, but be aware that SQL Server maintains fine-grained,
short-lived locks at the page and row levels.

After the Snapshot Agent creates the bcp files, SQL Server writes another marker to the
log file of the publication database, recording the end of the snapshot process. These
markers are then used by the Log Reader Agent to copy any changes committed to the
published objects (as recorded in the log file between those two markers) to the distri-
bution database.

When it is time to apply the snapshot, the Distribution Agent uses the scripts generated
by the Snapshot Agent during the first step to drop and re-create the tables in the
subscription database. It then bulk-loads the data from the bcp files in the snapshot
folder into those tables. During the load process, SQL Server maintains table locks on all
subscription tables affected. With the table locks still in place, as the last step, the Distri-
bution Agent uses the log data that captured the activity during the snapshot generation
to bring all tables into a transactionally consistent state.

102

Chapter 4: Transactional Replication – the Replication Agents

Log Reader Agent

The Log Reader Agent copies the transaction log records from the publication database to
the distribution database for all transactions that modified published database objects.

Each time a database object changes, SQL Server first writes a record to the database's
transaction log. After that, SQL Server applies the changes to the actual data pages. When
the transaction is committed, SQL Server forces the log records to be written to disk
before signaling success. This process is an integral part of any ACID-compliant relational
database management system. (An ACID-compliant system is one that conforms to the
principles of atomicity, consistency, isolation, and durability.)

During this process, SQL Server records all the information necessary to apply or reapply
the changes to the data pages. For example, if a power outage occurs before all data pages
have been written to disk, but after the transaction committed, these log records allow
SQL Server to redo the changes and finish the write operations upon restart.

Transactional replication uses the same information to apply changes made to published
objects in the publication database to the target objects in the subscription database.

If a data manipulation language (DML) statement such as INSERT, UPDATE, or DELETE
or a data definition language (DDL) statement such as ALTER TABLE modifies a published
object in the publication database, SQL Server marks the log file record of that change
with a replication flag. SQL Server does not mark changes to non-replicated objects, even
if they are in the same transaction as published objects.

The Log Reader Agent connects to the Publisher, searches the log file for records that are
marked with the replication flag, and copies to the distribution database the information
necessary to apply the changes to the subscription database. Because of this process,
replication can have a significant impact on the log file size of the publication database.

103

Chapter 4: Transactional Replication – the Replication Agents

One reason for this has to do with Virtual Log Files (VLFs). A log file is split into VLFs, and
as long as one is required, that VLF and the ones that logically follow cannot be reused.
For example, a VLF might be required for a lengthy period of time for long-running
transactions or outstanding log backups. Only after SQL Server does not need a VLF to
warrant transactional consistency will it be reused. SQL Server manages this process
automatically.

With replication, however, there is an additional reason that can prevent VLFs from being
reused. Because the Log Reader Agent has to process every log record in the publication
database, reuse cannot occur until the Log Reader Agent processes all records in the VLF.
Several situations can prevent the agent from processing log records in a timely manner.
The most obvious ones are the Distributor being down or the Log Reader Agent not
running. An overloaded Distributor can also cause a delay in log record processing.

When the VLFs cannot be reused, the log file must grow to continue to function, and
the file fills up. Depending on the log file's autogrow setting, this operation can take a
significant amount of resources. If the log file has reached its configured maximum size or
the drive is full, SQL Server will prevent any further write access to that database until the
issue is resolved.

After you've set up replication, keep an eye out for the size of the log file associated with
your publication database. You can use the query in Listing 4-2 to verify whether repli-
cation is preventing log record reuse. If the log_reuse_wait_desc column contains
the value REPLICATION over an extended period of time, replication is the reason for
unexpected log growth.

SELECT log_reuse_wait_desc,
 Name
FROM sys.databases

Listing 4-2: Querying sys.databases to discover issues related to VLF reuse.

104

Chapter 4: Transactional Replication – the Replication Agents

Distribution Agent

The Distribution Agent moves data from the distribution database to the subscription
database. The Distribution Agent connects to the Distributor and reads the recorded
changes. Then it connects to the Subscriber and applies those changes in the order they
occurred. That order is guaranteed within a single subscription and single publication,
but not across publications. In some cases, this can lead to logical inconsistencies. For
example, if you have two tables that have a foreign key relationship on the Publisher
and those two tables are published in separate publications, two inserts into the two
tables could get executed in the wrong order on the Subscriber, leading to a temporarily
orphaned record in the child table. However, replication by default does not copy foreign
key constraints to the Subscriber, so you will not receive an error if a logical inconsistency
should occur. To be safe, tables that have a foreign key relationship should always be
published in the same publication.

If the subscription is a push subscription, the Distribution Agent runs on the Distributor.
That means that the Distributor is in control of when the distribution to each Subscriber
occurs. For a pull subscription the agent is located on the Subscriber, in which case the
Subscriber controls the synchronization schedule. In most cases, you'll want to use the
push subscription model, but if you have several Subscribers and you need to start and
stop the data flow to each of them at different times (such as having to wait for a nightly
reporting process), you're better off using the pull subscription model.

Summary

In this chapter, we discussed the internals of the replication agents. We looked at the
purpose of each replication agent in detail and discovered what steps each is taking to
make replication work. We also recognized that a replication process that is running slow
can have a significant impact on the size of the publication database's log file.

105

Chapter 4: Transactional Replication – the Replication Agents

After all this theory, let's now move on to actually setting up transactional replication. In
Chapter 5, we'll create a publication, in Chapter 6 we'll set up the permissions necessary
to set up a subscription, and in Chapter 7 we'll subscribe to that publication. Chapter
8 will close out the section on transactional replication with an in-depth look at the
different SQL Server Agent jobs involved in transactional replication.

106

Chapter 5: Transactional Replication –
the Publication

A publication is a set of articles made available as a unit for others to subscribe to. The
articles are associated with objects in a database on the Publisher. In transactional
replication, each transaction that changes one or more of these objects is recorded in
the log. The information required to replay those changes is then made available to the
Subscribers so they can apply the changes to their copy of the published objects.

A Publisher, then, is any SQL Server instance that hosts a database with a defined
publication. You can define one or more publications on a Publisher, and you can define
one or more articles on each publication. All articles within a single publication must
reside in the same database, with each article corresponding to a single database object.
However, articles in multiple publications can map to the same database object.

In this chapter, we'll take a deeper look at what is involved in setting up a transactional
publication and walk you through a set of exercises that demonstrate the process.
After working through these exercises, you'll be able to create your own transactional
publication and configure the available options in an optimal way for your environment.
You'll also be able to tighten security around your own replication setup.

Preparing to Create a Publication

Before setting up the actual publication, there are a few prerequisites that must be
addressed. The first is to ensure that a Distributor and a Publisher have been configured.
This chapter assumes that you performed the exercises in Chapter 3 in order to set up
your Distributor. As part of those exercises, you should have also designated a separate
SQL Server instance as your Publisher and associated the Publisher with the Distributor.

107

Chapter 5: Transactional Replication – the Publication

If you have not done so yet, please visit Chapter 3 for details about setting up distribution
on both the Distributor and the Publisher.

Once you've set up your Distributor and your Publisher, you need to identify a database
on the Publisher that you want to configure for replication, and then you must enable
that database to support replication.

Creating a database

For the exercises in this chapter, we'll build our own database rather than use an existing
one. Listing 5-1 shows the T-SQL script that you can run to create the ReplA database on
your system.

USE MASTER;
GO
EXECUTE AS LOGIN = 'SA';
GO
CREATE DATABASE ReplA;
GO
USE ReplA;
GO
IF OBJECT_ID('dbo.Test') IS NOT NULL DROP TABLE dbo.Test;
GO
CREATE TABLE dbo.Test(
 Id INT IDENTITY(1,1) PRIMARY KEY,
 Data INT CONSTRAINT Test_Data_Dflt DEFAULT CHECKSUM(NEWID()),
 Data2 INT CONSTRAINT Test_Data2_Dflt DEFAULT CHECKSUM(NEWID()),
 Data3 INT CONSTRAINT Test_Data3_Dflt DEFAULT CHECKSUM(NEWID())
);

GO
INSERT INTO dbo.Test DEFAULT VALUES;
GO 1000

108

Chapter 5: Transactional Replication – the Publication

GO
CREATE PROC dbo.Proc1
AS
BEGIN
 INSERT INTO dbo.Test DEFAULT VALUES;
END;
GO
CREATE VIEW dbo.View1
AS
 SELECT Id, Data
 FROM dbo.Test
 WHERE Id > 500;
GO
CREATE VIEW dbo.View2 WITH SCHEMABINDING
AS
 SELECT Id, Data
 FROM dbo.Test
 WHERE Id < 500;
GO
CREATE UNIQUE CLUSTERED INDEX [dob.View2(Id):CI] ON dbo.View2(Id);
GO
CREATE FUNCTION dbo.Func1()
RETURNS INT
AS
BEGIN
 DECLARE @r INT = (SELECT MAX(Id) FROM dbo.Test);
 RETURN @r;
END;
GO
USE MASTER;
GO
REVERT;
GO

Listing 5-1: Creating a test database for the publication.

Notice that the script, in addition to the database itself, creates several objects: a table, a
stored procedure, a view, an indexed view, and a function. We can replicate any of these
objects from our Publisher to our Subscriber.

109

Chapter 5: Transactional Replication – the Publication

Enabling a database for replication

Any member of the db_owner fixed database role can define a publication in a database.
However the database must first be enabled for replication by a member of the sysadmin
fixed server role.

If a member of the sysadmin fixed server role is setting up the publication, that user
can skip this step. It is required only to allow members of the db_owner fixed database
role who do not have elevated server privileges to create a publication in one of their
databases.

The following steps walk you through the process of enabling a database for replication:

1. Open SQL Server Management Studio (SSMS), and connect to the SQL Server
instance that has been designated as the Publisher. Make sure it is already linked to
your Distributor, as mentioned earlier.

2. In Object Explorer, right-click the Replication folder, and then click Publisher
Properties, as shown in Figure 5-1.

110

Chapter 5: Transactional Replication – the Publication

Figure 5-1: Opening the Publisher Properties dialog box.

This launches the Publisher Properties dialog box, which has two pages:

• The General page allows you to specify a new administrative password for the
connection to the Distributor in the event it was changed there.

• The Publication Databases page (shown in Figure 5-2) lets you enable databases for
publishing. For each database, you can select whether transactional replication, merge
replication, or both are allowed.

111

Chapter 5: Transactional Replication – the Publication

Figure 5-2: Enabling databases for publishing.

On the Publication Databases page, select the Transactional option associated with the
ReplA database.

3. Click OK to confirm your change and close the Publisher Properties dialog box.

That's all there is to enabling transactional replication on the ReplA database. You're now
ready to create your publication.

112

Chapter 5: Transactional Replication – the Publication

Creating a Publication

The easiest way to create a publication is to use the New Publication Wizard. Except for
configuring the security accounts themselves, you can use the wizard for the entire setup
process. However, to make the process more manageable, we've broken down the exercise
into several tasks: configuring the database for replication, selecting which articles to
replicate, setting up the initial snapshot, and configuring security.

Setting up your database

To start the process of setting up a publication, you'll need to launch the New Publication
Wizard, select a database on which you want to define the publication, and then specify
the type of publication, as described in the following steps:

1. In Object Explorer, expand the Replication folder, right-click the Local
Publications folder, and then click New Publication, as shown in Figure 5-3.

113

Chapter 5: Transactional Replication – the Publication

 Figure 5-3: Launching the New Publication Wizard.

2. When the New Publication Wizard appears, advance to the Publication Database
page, shown in Figure 5-4.

114

Chapter 5: Transactional Replication – the Publication

Figure 5-4: Choosing the publication database.

If you started the wizard as a member of the db_owner fixed database role instead of as a
sysadmin, the page will list only the databases that you own and that have been enabled
for publishing. There will also be a note advising you that not all databases might be
included in the list, as shown in Figure 5-5.

115

Chapter 5: Transactional Replication – the Publication

 Figure 5-5: Choosing the publication database as a db_owner.

If, instead, you get the message box shown in Figure 5-6, refer back to the previous section
about enabling a database for replication.

 Figure 5-6: Receiving a warning that no database is enabled for replication.

116

Chapter 5: Transactional Replication – the Publication

3. From the list of databases shown in the Publication Database page, select the
database that you want to publish (in this case, ReplA), and then click Next to
advance to the Publication Type page, shown in Figure 5-7.

 Figure 5-7: Selecting the publication type.

4. From the list of publication types, select Transactional publication.
If you are only a member of the db_owner role, you might now see the error
shown in Figure 5-8. It informs you that the selected database is not enabled for
the type of replication selected, and it prevents you from continuing. Again,
check back to the previous section for information about enabling a database
for transactional replication.

117

Chapter 5: Transactional Replication – the Publication

 Figure 5-8: Selecting a publication type that is not enabled.

5. After selecting the publication type, click Next. This will take you to the Articles
page, which we'll review in the next section.

118

Chapter 5: Transactional Replication – the Publication

Setting up your articles

After you select the publication type, you can define the articles for the publication. An
article is always based on a single object in the publication database. You define your
articles as part of the process of working through the New Publication Wizard. The
following steps describe walking through the article-related pages of the wizard:

1. If you have not already advanced to the Articles page, do so now. The page lists all
objects that can be replicated, as shown in Figure 5-9. The list of objects includes
tables, stored procedures, views, indexed views, and user-defined functions.

Figure 5-9: Specifying the articles to include in your publication.

119

Chapter 5: Transactional Replication – the Publication

You configure the articles by using the Article Properties dialog box (described in the
next step). The options available for configuring an article depend on the associated
object type:

• By default, a table article replicates the data in the table as well as any schema changes
to the table. However, you have the option to replicate only the data and ignore
changes to the table schema.

• For a stored procedure, you can choose to replicate the procedure definition or the
definition and each execution. Replicating an execution in this context means that
each time the procedure runs on the Publisher, it will be called with the same param-
eters on each Subscriber. Data changes to underlying tables that happen during the
execution of the procedure will not be replicated separately. This can be a great perfor-
mance benefit because potentially a lot less data has to be moved.

• Views and functions always replicate the schema only.

• Indexed views are schema only by default. However, they can get replicated as tables;
that means on the Subscriber side a table is created instead of a view. All schema
changes to the indexed view as well as changes to the underlying data will be applied to
that table.

For a complete list of articles and their restrictions, check out the topic, Publish Data
and Database Objects,1 in SQL Server Books Online.

2. Associated with each article is a set of properties that you can view or reconfigure. To
access the properties associated with the Test table, select the table in the Objects
to publish list, and then click the Article Properties button. This opens a drop-down
list that lets you choose between showing the Article Properties dialog box for
the highlighted article only, or showing the dialog box for all table articles in the

1

http://msdn.microsoft.com/en-us/library/ms152559.aspx
http://msdn.microsoft.com/en-us/library/ms152559.aspx

120

Chapter 5: Transactional Replication – the Publication

publication. The second option allows you to change the properties of all articles of
a single type (the type of the highlighted object) in one shot. For this exercise, select
the first option to open the Article Properties dialog box for the Test table only, as
shown in Figure 5-10.

 Figure 5-10: Properties associated with the Test table article.

The list of properties changes depending on the type of article you have selected. For
example, depending on the article, you can specify the name of the target object, what
to do if the target object already exists, whether to replicate each stored procedure
execution along with the definition, etc. For a detailed list of the available options
and their explanations, refer to the topic, Publish Data and Database Objects,2 in
SQL Server Books Online.

2

http://msdn.microsoft.com/en-us/library/ms152559.aspx

121

Chapter 5: Transactional Replication – the Publication

3. For now, we'll stick with the Test table's default property settings, so click Cancel to
close the Article Properties dialog box.

4. For table articles, there is one more option to be aware of. You can choose to
publish the entire table or a subset of columns within that table. If you refer back
to Figure 5-9, you'll notice a plus sign next to the Test table in the Objects to publish
list. By clicking the plus sign, you can expand the table node to display the table's
columns, as shown in Figure 5-11. Here, you can select individual columns to be repli-
cated or to be excluded.

Figure 5-11: Selecting columns in a table article.

When selecting columns to be replicated, you must always include the primary key. All
other columns can be omitted. In such cases, when you select individual columns, you're
creating a vertical filter.

122

Chapter 5: Transactional Replication – the Publication

For the rest of this chapter, we'll assume you did not choose to exclude any columns. So
make sure all columns are selected, and click Next to advance to the Filter Table Rows
page. This page appears only if you selected at least one table article on the previous page,
as we have done in the example.

5. Click Add to open the Add Filter dialog box, which is shown in Figure 5-12.

Figure 5-12: Defining a horizontal filter on the Test table.

123

Chapter 5: Transactional Replication – the Publication

The Add Filter dialog box lets you create a filter that specifies which rows to replicate in
your selected table article. This type of filter is known as a horizontal filter and looks like
a SELECT statement that includes a WHERE clause. The part of the SELECT statement
before the WHERE keyword is automatically supplied and cannot be changed. After the
WHERE keyword, however, you can specify the clause's condition. For example, if you
define the WHERE clause as WHERE Data > 42, only rows with a Data column value
greater than 42 will be replicated.

Be aware that a horizontal filter uses significant additional resources because every row
that was changed on a filtered article has to be inspected to see whether or not it matches
the filter. For more details on horizontal filters, check out SQL Server Books Online.

6. Click Cancel on the Add Filter page to return to the Filter Table Rows page
without creating a filter, and then click Next to advance to the next page of the New
Publication Wizard.

7. At this point, depending on the type of articles you selected, you might see the
Article Issues page. The page warns you of potential issues that could arise from your
selection. Figure 5-13 shows an example of the page with a couple of issues listed.

124

Chapter 5: Transactional Replication – the Publication

 Figure 5-13: Potential issues with the article selection.

This page does not mean that there is a problem. It only points out areas that often
cause problems later. If it appears, make sure you look thoroughly through each point
listed and then make the necessary changes, if any. Usually you can just advance to the
next page by clicking Next. This will get you to the Snapshot Agent page, which we cover
in the next section.

Setting up the initial snapshot

After you've defined the articles, the next step in setting up a publication is to schedule
a snapshot for the initial synchronization from source to target. The snapshot is a copy
of the object definitions and the data stored in those objects. When you create a new
subscription for the publication, replication by default uses that snapshot to create and
initialize the published objects on the Subscriber.

125

Chapter 5: Transactional Replication – the Publication

The Snapshot Agent creates the snapshot and stores it in the snapshot folder on the
Distributor. The following steps describe how to configure the Snapshot Agent:

1. On the Snapshot Agent page of the New Publication Wizard, you can choose to
have the Snapshot Agent create the snapshot immediately after the publication
has been created, or you can schedule the agent to run at a later time, as you can
see in Figure 5-14. If you choose to schedule the agent to run at a later time, you're
presented with the SQL Server Agent New Job Schedule dialog box, which lets you
create a schedule for running the Snapshot Agent.

 Figure 5-14: Setting up the Snapshot Agent to create a snapshot.

If you're setting up a publication that will have only one Subscriber, you should probably
create the snapshot immediately. On the other hand, if you'll need to resynchronize
multiple Subscribers often, you should consider setting up the agent to refresh the

126

Chapter 5: Transactional Replication – the Publication

snapshot regularly so you're always working with fresh data. Remember, however, that
a snapshot is needed only when adding a new Subscriber to a publication or when an
existing Subscriber needs to be resynchronized, such as when it has been disconnected for
too long.

Also keep in mind that creating a snapshot – particularly if large tables are involved – can
be quite resource intensive. Depending on the size of the tables and the network speed,
generating a snapshot can take several hours.

With all this in mind, you usually do not want to schedule the Snapshot Agent to run
at regular intervals. However, because of the impact that taking a snapshot can have, it
might be a good idea to schedule it to run during off-hours instead of right away.

2. For this exercise, select the "immediate" option, as shown in Figure 5-14, and
then click Next to advance to the Agent Security page, which is covered in the
next section.

Setting up security

The next step on our way to a working publication is to set up replication agent security.
Remember that replication agents are independent Windows programs responsible for
actually moving the data. Transactional replication uses a Snapshot Agent, a Log Reader
Agent and Distribution Agents. This section shows how to select the accounts that the
first two agents execute under. You will also see how to specify the connection credentials
for the agents to use to connect to the Publisher and the Distributor. Distribution Agents
will be covered in Chapter 7 when we look at setting up a subscription.

It is a general security best practice to have each Windows service or service-like
executable run under its own Windows account. That way, you can grant just the
minimal set of required permissions to each account. That practice greatly reduces the
surface for a potential malicious attack. It also reduces the amount of damage that can be
done should an attack be successful.

127

Chapter 5: Transactional Replication – the Publication

The replication agents run automatically and unattended, which puts them into this
category. Therefore, each one should be given its own account to run under. In this
exercise, we follow this best practice and show you how to set up separate accounts.
You'll also learn what permissions are required for each account.

The following steps walk you through the process of setting up agent security:

1. If you haven't already advanced to the Agent Security page of the New Publication
Wizard, do so now. On this page, you assign security accounts to the two agents used
to process a transactional publication: the Snapshot Agent and the Log Reader Agent,
as shown in Figure 5-15.

 Figure 5-15: Configuring agent security.

128

Chapter 5: Transactional Replication – the Publication

2. To set the security configuration for the Snapshot Agent, click the Security Settings
button associated with that agent. This opens the Snapshot Agent Security dialog
box, shown in Figure 5-16. Here you can provide a Windows login, or you can use
the SQL Server Agent service account. Microsoft documentation, however, warns
that the latter is not a recommended security best practice, so you should provide a
Windows login.

 Figure 5-16: Assigning a security account to an agent.

The Connect to the Publisher section of the Snapshot Agent Security page lets you
to specify how the agent should connect to the publisher. You can either use Windows
authentication (by selecting the option By impersonating the process account), or you
can provide a SQL Server login for the connection to the Publisher.

129

Chapter 5: Transactional Replication – the Publication

For the connection to the distribution database, the agent always uses Windows
authentication.

Click OK when you are done configuring the security settings for the Snapshot Agent.

3. For the Log Reader Agent, you have the same security options to choose from if you
click the agent's associated Security Settings button. However, instead of taking this
approach, you can use the same settings that you provided for the Snapshot Agent. To
do so, select the Use the security settings from the Snapshot Agent check box on the
Agent Security page but, as mentioned earlier, it's not recommended to do this.

Although replication provides a Snapshot Agent per publication, there is only one Log
Reader Agent for each publication database. That means that if you already have a publi-
cation defined in your database, you cannot change the Log Reader Agent account here.
However, you can still specify a different SQL Server login for the Log Reader Agent to
use to connect to the publication database for the new publication.

4. After you select the account and connection settings for both agents, the next step is
to grant the appropriate permissions to each applicable Windows account and SQL
Server login. The Snapshot Agent is responsible for moving data from the publication
database to the snapshot folder as well as to the distribution database. As a result, you
must make the Windows account assigned to the Snapshot Agent a member of the
db_owner fixed database role in both the publication database and in the distribution
database. The account also needs to have write permission on the snapshot folder.

If you set up the Snapshot Agent to not use integrated security to connect to the publi-
cation database, but instead use SQL Server authentication, the provided SQL Server
login also needs to be a member of the db_owner fixed database role in the publication
database. In that case the Snapshot Agent Windows account itself does not need to have
access to the publication database.

130

Chapter 5: Transactional Replication – the Publication

For this exercise, we're using the domain\SQL2_S12A_Snapshot Windows account
for the Snapshot Agent. To ensure the necessary access rights, we must configure our
accounts as follows:

• A SQL Server login must be associated with this Windows account on both the
Distributor and the Publisher.

• The distribution and publication databases must each include a user that is
associated with the login.

• Each user must be member of the db_owner fixed database role in that
user's database.

• The domain\SQL2_S12A_Snapshot Windows account must also be granted
write access to the snapshot folder, in this case \\SQL1\ReplDataS12A.

You should consult SQL Server and Windows documentation as necessary for details
about how to set up these accounts.

5. The Log Reader Agent also copies data from the publication database to the distri-
bution database, but it does not make use of the snapshot folder. The Windows
account assigned to the Log Reader Agent needs to be a member of the db_owner
fixed database role in the distribution database. In addition, the Windows account
(or the SQL Server login, if you're using SQL Server authentication to connect to the
publication database) needs to be a member of the db_owner fixed database role in
the publication database.

For this exercise, we're using the domain\SQL2_S12A_LogReader Windows account
for the Log Reader Agent. To ensure the necessary access rights, we must configure our
accounts as follows:

• A SQL Server login must be associated with this Log Reader Agent account on both
the Distributor and the Publisher.

131

Chapter 5: Transactional Replication – the Publication

• The distribution and publication databases must each include a user that is
associated with the login.

• Each user must be a member of the db_owner fixed database role in that
user's database.

Once again, you should consult SQL Server and Windows documentation as necessary
for details about how to set up these accounts.

6. After you have configured the security settings for both agents and made sure the
appropriate rights have been granted to these accounts, click Next to proceed to the
Wizard Actions page, where we'll finish the setting up of the publication.

Completing the publication setup

The remaining steps let you assign a name to your publication and specify when to
create the publication:

1. On the Wizard Actions page, you can specify that the wizard should create the
publication as soon as you've completed the wizard or, instead, create a script that
you can execute at a later time. For this exercise, select the Create the publication
option, and then click Next.

2. On the Complete the Wizard page, shown in Figure 5-17, type a name for the publi-
cation in the Publication name text box. The name needs to be unique within each
publication database.

132

Chapter 5: Transactional Replication – the Publication

 Figure 5-17: Assigning a name to the publication.

If you create two publications on different databases, you can use the same name for both
of them. However, if you have multiple publications, I strongly recommend that you use
meaningful and distinguishable names. A replication setup has a lot of moving parts.
There is no need to cause additional confusion by choosing the same or similar names for
multiple publications.

3. Type MySecondPublication into the Publication name text box, review the summary
on the Complete the Wizard page, and then click Finish. The wizard will create the
publication while displaying progress information on the Creating publication page.
Once this step is complete, click Close.

133

Chapter 5: Transactional Replication – the Publication

These are all the steps necessary to create a publication. To see if everything worked
correctly, we need to first create a subscription. The next two chapters will cover the steps
for doing just that. In the meantime, you can check that the publication was actually
created, by returning to Object Explorer, expanding the Replication folder and then
expanding Local Publications folder, as shown in Figure 5-18.

 Figure 5-18: Verifying that your new publication exists.

Your new publication should now be listed under the Local Publications folder, which
means you can now create a subscription. But first, let's look at several issues that could
arise when setting up your publication.

134

Chapter 5: Transactional Replication – the Publication

Potential Problems

Because there are so many steps to take and decisions to make when configuring repli-
cation, you might run into issues during the setup. The most common problem is an
account that does not have the appropriate rights. If something does not seem to work
as expected, review all applicable accounts and make sure that they're configured with
the correct permissions.

Another issue that might complicate matters is that error messages do not always point
you in the right direction. For example, the message, The remote server "SQL1\S12A"
does not exist, or has not been designated as a valid Publisher really means
that the Snapshot Agent does not have the necessary permissions to access the distri-
bution database. It has nothing to do with the Publisher. What makes matters even more
difficult is that finding the error messages is not always a straightforward process.

You should also take into account several other considerations when implementing
replication. (Chapter 14 will provide more details about how to troubleshoot replication.)

• If you're using a snapshot share that is located on the Distributor, you might have
to grant write access to the Snapshot Agent account on both the share and the
underlying folder.

• If you've assigned Windows domain accounts to the replication agents and use imper-
sonation to connect to the other servers in your replication setup, you might have to
grant the Windows account that is executing the SQL Server service read access to
Active Directory. This is a best practice anyway. Check out SQL Server Books Online
and Windows documentation for details on why and how to do this.

• In general, you should use a SQL Server login (such as SA) to execute the replication
wizards, instead of a Windows account. A full discussion of why you should do this
is beyond the scope of this book. However, you'll usually run into fewer issues – not
only with replication, but with other functionality as well – if the objects you're
dealing with are owned by a user associated with a SQL Server login and not a
Windows account.

135

Chapter 5: Transactional Replication – the Publication

Summary

In this chapter, you learned how to create a publication for transactional replication.
The chapter explained who is allowed to create a publication and what permissions
the replication agents involved in a publication require to do their jobs successfully. In
addition, the chapter described how to add articles to the publication and what object
types you can select as articles. You also learned how to schedule the Snapshot Agent in
order to generate the initial snapshot. Finally, the chapter pointed out potential problems
you might run into when implementing replication.

Using this information, you should now be able to set up your own publication. Once you
do, any modifications to the publication articles are recorded in the distribution database.
However, because Subscribers have yet to be set up, no one is collecting that data from
there, which means the distribution database will steadily grow, potentially a lot. The
next step is to set up a Subscriber, which we'll cover in the following chapters.

136

Chapter 6: The Publication Access List

In the previous chapters, we set up distribution and created a publication. With those two
pieces in place, all changes to the articles of that publication are recorded and held in the
distribution database for later use.

To make use of this collected data, we have to set up a subscription. Before we can create
a subscription, however, we need to make sure the necessary permissions are in place.

Setting Up a Subscription

As you learned in Chapter 5, to create a publication in a database, two requirements must
be in place:

• The login used to execute the setup needs to have at least db_owner level permissions
in the publication database.

• The database itself needs to be enabled for publishing. Enabling a database for
publishing requires sysadmin privileges. However, it needs to be done only once
per database.

The requirements for a new subscription are a little more complex. During setup,
information needs to be gathered from the distribution database and changes need to
be applied to that database, the publication database, and the subscription database.
Additionally, you must provide an account to run the Distribution Agent. As a result, all
three locations require a substantial list of permissions.

SQL Server supports two subscription models: pull subscriptions and push subscriptions.
Chapter 7 provides information about both models and explains the differences between
them. For now, however, know that in a pull subscription the Subscriber is responsible to

137

Chapter 6: The Publication Access List

collect data changes from the publication, whereas in a push subscription the Distributor
actively pushes the data to the Subscribers. A push subscription requires the complex
permission set mentioned above, but a pull subscription requires a significantly reduced
set of permissions.

A discussion of the permissions required to set up a push subscription is beyond the scope
of this book (although you can use an account with sysadmin privileges to simplify
matters). For more details about the required permissions, see SQL Server Books Online.
The easier case of the pull subscription is, however, worth spending time on.

To be able to set up a pull subscription, your account needs to fulfill only
two requirements:

• Be a member of the db_owner database role in the subscription database.

• Be added to the Publication Access List (PAL) of the publication.

Before we continue, make sure that your login is mapped to a user in the subscription
database that is a member of the db_owner role. Check SQL Server Books Online for
details on how to do this.

Configuring the Publication Access List

The Publication Access List (PAL) is a security measure that prevents unauthorized users
from accessing replication data. It is independent of the other permissions maintained
by SQL Server. Instead, it is maintained as internal information in the publication
database and cannot be directly accessed with Transact-SQL. It provides for an easy
way to control who can subscribe to a publication without having to worry about other
SQL Server permissions.

138

Chapter 6: The Publication Access List

Only logins that meet the following three requirements can be added to the PAL for a
specific publication:

• the login must exist on the Distributor

• the login must exist on the Publisher

• a user associated with that login must exist in the publication database.

You do not need to grant any permission to the user in the publication database. The user
in the publication database is required only because the PAL information is stored in that
database. Login information, on the other hand, is stored in the master database, so that
information might not be accessible in all situations. However, database user information
is readily available within each database, as it is stored at the database level.

The following steps walk through adding an account (in this case, DOMAIN\SQL3_PAL)
to the PAL:

1. The PAL is maintained on the Publisher. Therefore the first step is to connect to
it in SSMS.

2. In Object Explorer, expand the Replication folder and then the Local Publications
subfolder.

3. Right-click your publication and then click Properties, as shown in Figure 6-1.

139

Chapter 6: The Publication Access List

 Figure 6-1: Accessing a publication's properties.

4. When the Publication Properties dialog box appears, go to the Publication Access
List page, as shown in Figure 6-2. The page contains a list of the logins that are
already members of the PAL.

140

Chapter 6: The Publication Access List

Figure 6-2: The Publication Access List page.

5. Click the Add button on the right-hand side to add a new login to the PAL. This
opens the Add Publication Access dialog box, as shown in Figure 6-3.

141

Chapter 6: The Publication Access List

 Figure 6-3: The Add Publication Access dialog box.

The dialog box contains all logins that are eligible to be a member of the PAL, but that are
not yet on that list. If your login is not included here, make sure that it meets the three
requirements that are listed at the beginning of this section.

6. Select the login that you want to add (DOMAIN\SQL3_Pal in this example), and
click OK to close the Add Publication Access dialog box. Then click OK to close the
Publication Properties dialog box. This is all you need to do to add a login to the PAL.

142

Chapter 6: The Publication Access List

Creating the Subscription

A login that is a member of the PAL and also of the db_owner role in the subscription
database can be used to execute the New Subscription wizard. You can find the details
of how to use that wizard in Chapter 7. When you follow the steps in that chapter, you'll
find that you need to provide a Windows account to execute the Distribution Agent. That
account needs the same set of permissions as the account setting up the subscription,
with one addition: the account must also have read access to the snapshot folder. Check
out Chapter 7 for more details on how this works.

The example in this chapter is based on transactional replication. However, everything
said also holds true for merge replication. The only difference is that a Merge Agent is
used instead of a Distribution Agent.

Summary

In this chapter, we learned about the minimal security requirements for an account
used to create a pull subscription. We also discovered how to configure the PAL. We'll
encounter the PAL a few more times during the rest of the book, as it is a requirement for
the accounts running the Distribution Agents or Merge Agents.

143

Chapter 7: Transactional Replication –
the Subscription

In Chapter 6, you learned about the security considerations to take into account before
creating a subscription. Now it's time to actually set up that subscription. A subscrip-
tion's main purpose is to specify the database that the recorded changes will be applied to.
Although you can define a publication without a subscription, the publication can live up
to its potential only if there is a subscription in place. In fact, you can implement multiple
subscriptions for a single publication.

A SQL Server instance that has a subscription defined in one of its databases is called
a Subscriber. The Subscriber hosts the subscription database to which the published
changes are applied.

In this chapter, we walk through the steps required to set up a subscription. You'll learn
how to use the New Subscription Wizard to create and configure the subscription, what
permissions are required for the account used for the Distribution Agent, and how to
configure retention to control how long data is maintained. In addition, when setting up
the subscription, you'll learn about the differences between push and pull subscriptions,
which will help you decide which type is appropriate in your situation. You'll also learn
how the different retention settings can affect your business requirements.

This chapter assumes that you've performed the exercises in the previous chapters and
have set up the Distributor and the Publisher and configured a publication to which
you can now subscribe. To get the most out of this chapter, you should designate a
separate SQL Server instance to use as your Subscriber, as we did with the Publisher. The
Subscriber should be on a machine separate from the Distributor as well as the Publisher.

144

Chapter 7: Transactional Replication – the Subscription

Setting up a Subscription

The easiest way to create and configure the actual subscription is to use the New
Subscription Wizard. The wizard walks you through each step necessary to set up the
subscription. However, this process can be a bit overwhelming, so we've broken it down
into several tasks: connecting to the Publisher, selecting the subscription type, specifying
the Subscriber and subscription database, and configuring security on that database.

Connecting to the Publisher

Your first task in setting up a subscription is to select the publication that you want
to subscribe to. For that, you need to launch the New Subscription Wizard. The
following steps walk through that process of launching the wizard and connecting to
your Publisher:

1. In SSMS, connect to the SQL Server instance that you want to use as the Subscriber.
To be able to run the wizard, you need to use a login that has access to the Subscriber,
the Distributor and the Publisher. In Chapter 6, we discussed the permissions
required to set up a pull subscription. However, in this chapter we will be working
with a push subscription because it is a more common setup in transactional repli-
cation. As mentioned during the previous chapter, we are not going to discuss the
required permissions to set up a push subscription in detail. The easiest way to get
through this chapter is to use a single Windows account that has sysadmin privi-
leges on all three instances.

2. In Object Explorer, expand the Replication folder for your instance, right-click the
Local Subscriptions folder, and then click New Subscription, as shown in Figure 7-1.
This will launch the New Subscription Wizard.

145

Chapter 7: Transactional Replication – the Subscription

Figure 7-1: Launching the New Subscription Wizard from Object Explorer.

3. If a Welcome page appears, advance to the Publication page, shown in Figure 7-2.
Here we identify the Publisher, the publication database, and the publication itself.

146

Chapter 7: Transactional Replication – the Subscription

 Figure 7-2: Selecting the Publisher on the wizard's Publication page.

First, we need to select the Publisher using the Publisher drop-down list. If – as previ-
ously suggested – you are using a separate instance for your Subscriber, your Publisher
won't be listed here. Click the Find SQL Server Publisher option to open a standard SQL
Server connection dialog box, where you can connect to the SQL Server instance that is
your Publisher.

4. After you connect to your Publisher, it will be automatically selected in the Publisher
drop-down list. Additionally any publication databases and publications defined on
that Publisher are listed in the Databases and publications window, as shown in
Figure 7-3.

147

Chapter 7: Transactional Replication – the Subscription

 Figure 7-3: Selecting a publication database and a publication.

If you performed the exercises in Chapter 5, the publication MySecondPublication will be
listed beneath the ReplA publication database.

5. Select the MySecondPublication publication, and then click Next to advance to the
Distribution Agent Location page, which we cover in the following section.

148

Chapter 7: Transactional Replication – the Subscription

Selecting the Distribution Agent location

To create a subscription (unlike the steps involved in creating a publication), you do not
need to select which type of replication you want to use. The replication type is defined
by the publication. However, there is one choice that needs to be made at this point: you
must choose between a push subscription and a pull subscription.

When data is being replicated, the Distribution Agent moves data from the distribution
database to the subscription database. Each subscription uses its own Distribution Agent.
The difference between a push subscription and a pull subscription lies in where this
agent runs and, as a direct consequence, which server has control over when the data
movement occurs.

For a push subscription, the Distribution Agent runs on the Distributor and pushes the
data to the Subscriber. If you need the data to move from the Publisher to the Subscriber
in the shortest timeframe possible, in a continuous manner, a push subscription is the
best way to go. This is also by far the most common scenario in transactional replication.

For a pull subscription, the Distribution Agent runs on the Subscriber, pulling the
data from the Distributor. This option might be better than a push subscription if the
Subscriber needs to steer the data flow. For example, the Subscriber might not always be
connected to the network, or the data should not change on the Subscriber until a given
process has completed. A pull subscription gives the Subscriber full control over when the
data flow occurs.

For this exercise, we'll go with a push subscription. The following steps walk you through
the process of selecting the subscription type:

1. If you haven't already done so, advance to the Distribution Agent Location page of
the New Subscription Wizard (shown in Figure 7-4).

149

Chapter 7: Transactional Replication – the Subscription

This page lists two options. Run all agents at the Distributor will configure the
subscription as a push subscription. Run each agent at its Subscriber will configure the
subscription as a pull subscription.

 Figure 7-4: Selecting the subscription type.

2. Select the first option (as shown in Figure 7-4), and then click OK to continue to the
Subscribers page, which we cover in the next section.

Note that, if you set up your subscription as a pull subscription instead of push, you'll see
differences from what we show here when you get to the Distribution Agent Security
page later in the wizard. However, the differences are minor, so you should still be able to
follow along if you go with a pull subscription.

150

Chapter 7: Transactional Replication – the Subscription

Specifying the Subscriber and the subscription
database

The following steps walk you through the process of selecting the Subscriber and the
subscription database to associate with your subscription:

1. If you haven't already done so, advance to the Subscribers page of the New
Subscription Wizard (shown in Figure 7-5). On this page, you select the Subscriber
and its associated subscription database.

 Figure 7-5: Specifying the Subscriber and the subscription database.

151

Chapter 7: Transactional Replication – the Subscription

2. The Subscribers and subscription databases grid already shows the Subscriber you
connected to in the beginning – SQL3\S12A, in the example. However, you need to
make sure the check box associated with the Subscriber is selected.

3. In the Subscription Database column of the row associated with your Subscriber,
select the applicable subscription database. Or you can instead select the New
Database option, which launches the New Database Wizard and lets you create a
subscription database on the fly.

If you select an existing database, be careful to pick the correct one. The subscription
initialization step drops and re-creates all objects in the subscription database that are
part of the subscription.

Note

If you pick the wrong database and that database has objects with the same name as objects being

replicated, those objects will be dropped. You will receive no warning messages to let you know that

this is happening.

The Subscribers page of the New Subscription Wizard also lets you to associate more
than one Subscriber with your publication. For this, you can click the Add Subscriber
button to add as many Subscribers as necessary. However there are some limitations.
For example, all Subscribers that are set up together in this way have to use the same
subscription model (push or pull). Also, while it is possible to have a single Subscriber
subscribe to a single publication more than once using distinct subscription databases,
the wizard allows for each Subscriber to be included only once. It's generally advised that
you run the wizard again for each new subscription. Therefore we won't be discussing
this option further.

4. To complete this step, make sure that you've selected the correct subscription
database and verified that the check box associated with your Subscriber is selected,
and then click Next to advance to the security section of the wizard, which we cover
in the following section.

152

Chapter 7: Transactional Replication – the Subscription

Configuring security on the Distribution Agent

The main difference between setting up a push and a pull subscription can be found
in the security setup. The Distribution Agent always uses Windows authentication to
connect to the local instance where it is located.

In the case of a push subscription, the Distribution Agent runs on the Distributor. The
connection to the distribution database is therefore made by impersonating the account
the agent runs under.

For the connection to the subscription database, you can choose either to use imperson-
ation or to provide a SQL Server login. If all machines are in the same domain, choosing
impersonation is a best practice and SQL Server Books Online recommends always using
it. However, if you are trying to replicate data between machines that are in separate
domains, you might have to go with a SQL Server login in some situations.

In the case of a pull subscription, the Distribution Agent runs on the Subscriber. Here
the connection to the subscription database is fixed to use process account imperson-
ation; however, you can choose between impersonation and a SQL Server login for the
connection to the distribution database.

The next step in configuring your subscription is to set up security for the Distribution
Agent. This involves configuring the accounts used to connect to the Distributor and
Subscriber and used to execute the agents. The following steps walk you through the
process of setting up these accounts:

1. If you haven't already done so, advance to the Distribution Agent Security page
of the New Subscription Wizard (shown in Figure 7-6). The Subscription properties
grid displays one row per Subscriber. Any Subscribers listed here are those we
selected earlier on the Subscribers page. In our case, we selected only one
Subscriber: SQL3\S12A.

153

Chapter 7: Transactional Replication – the Subscription

 Figure 7-6: Setting up security for the Distribution Agent.

2. For each Subscriber, you have to select the necessary accounts by using the Distri-
bution Agent Security dialog box. To launch the dialog box, click the ellipsis button
at the end of the row associated with the specific Subscriber.

Figure 7-7 shows the Distribution Agent Security dialog box for our Subscriber
(SQL3\S12A). The one shown here is specific to a push subscription. However, the
dialog box that appears for a pull subscription is very similar. It differs only in the fact
that it allows for a SQL Server login to be selected to connect to the Distributor, rather
than the Subscriber.

154

Chapter 7: Transactional Replication – the Subscription

 Figure 7-7: Assigning security accounts to the Distribution Agent.

The number of connections and accounts needed to set up replication can seem
overwhelming at first. Refer back to Chapter 4 for more details about the replication
agents. In addition, Chapter 8 will provide information about the SQL Server Agent jobs
that drive the replication agents.

155

Chapter 7: Transactional Replication – the Subscription

3. At the top of the Distribution Agent Security dialog box, provide a Windows
account for the Distribution Agent to run under and the password associated with
the account. For this you should create a new domain account without special access
privileges and provide it together with its password here. This example uses the
DOMAIN\SQL3_S12A_DistPush account.

You can instead choose to use the SQL Server Agent account, but as mentioned before,
this is not a good idea from a security perspective.

4. For the connection to the Distributor and the connection to the Subscriber, select the
option By impersonating the process account. Assuming your servers belong to the
same domain and you are using a new domain account, there is no reason to specify a
SQL login here.

5. Click OK to close the Distribution Agent Security dialog box. This brings you back to
the Distribution Agent Security page of the New Subscription Wizard.

Account Permissions

Before we continue any further with the New Subscription Wizard, we should first
grant the necessary permissions to the account(s) used to run the Distribution Agent, as
described in the following guidelines:

• The account running the Distribution Agent must have read access to the
snapshot folder.

• The account used by the Distribution Agent to connect to the subscription database
must be a member of the db_owner fixed database role in that database.

• The account used by the Distribution Agent to connect to the distribution database
must be a member of the PAL and also a member of the db_owner fixed database role
in the distribution database.

156

Chapter 7: Transactional Replication – the Subscription

For these exercises, we're using the DOMAIN\SQL3_S12A_DistPush Windows
account to run the Distribution Agent, and we're using impersonation to connect to
the Distributor and the Subscriber. Therefore this is the only account we need to be
concerned with for now. Providing the account with read access to the snapshot folder
and making the account a member of the db_owner fixed database role should be
straightforward. If you have any questions about how to do either, refer to the Windows
and SQL Server documentation. And if you need help with adding the account to the
PAL, refer back to Chapter 6.

Finalizing the Subscription

After granting the Distribution Agent account the appropriate permissions, we can
continue with the New Subscription Wizard. You should still be on the Distribution
Agent Security page, so follow these steps to finalize the subscription:

1. Click OK to advance to the Synchronization Schedule page, shown in Figure 7-8.

The Synchronization Schedule page lets you to select when the Distribution Agent
should be executed. Your schedule options are listed in the Agent Schedule drop-down
list associated with the Subscriber. The drop-down list supports three options:

• Run continuously – This option is the default setting and is by far the most common
choice. It causes the Distribution Agent to run at all times, in order to apply changes to
the subscription database as soon as they're available.

• Run on demand only – When this option is selected, you have to run the Distribution
Agent manually every time you want the databases to synchronize. The agent does
not start automatically. This option can be useful if another task, such as generating a
nightly report, needs to finish running before synchronization can happen.

• Define schedule – This option opens a standard SQL Server Agent New Job Schedule
dialog box, where you can set up a schedule.

157

Chapter 7: Transactional Replication – the Subscription

Figure 7-8: Configuring a synchronization schedule.

2. Ensure that Run continuously is selected, and then click Next to advance to the
Initialize Subscriptions page, shown in Figure 7-9.

158

Chapter 7: Transactional Replication – the Subscription

 Figure 7-9: Initializing the subscription.

Here you can select when the subscription should be initialized. You have two options:
Immediately and At first synchronization. The latter holds off with the initialization
until the first synchronization is started. If you had selected anything but the default
on the previous page and if the first scheduled synchronization is far in the future, you
should delay the initialization here too.

The default is Immediately and in most cases this is the appropriate choice.

You can also choose not to initialize the subscription by deselecting the Initialize check
box. However, in that case you won't be able to use the subscription until it is initialized
by some other means.

159

Chapter 7: Transactional Replication – the Subscription

For the initialization, a current snapshot must exist. If a long time (more than 24
hours) has passed since you created the snapshot, as outlined in Chapter 5, rerun the
Snapshot Agent job manually now. You can find the Snapshot Agent job by looking in
the Job Activity Monitor on the Distributor for a job in the REPL-Snapshot category
that has your publication name as part of its name, as shown in Figure 7-10.

Figure 7-10: Manually starting the Snapshot Agent on the Distributor.

3. On the Initialize Subscriptions page of the New Subscription Wizard, make sure
both the Initialize check box and the Immediately option are selected, and then
click Next.

160

Chapter 7: Transactional Replication – the Subscription

4. On the next page that appears, the Wizard Actions page, you can choose whether
the subscription is created upon completion of the wizard or whether a script is
generated that you can run later to create the subscription. For this exercise, we'll go
with the first option, so select Create the subscription(s), and then click Next.

5. On the final page of the wizard, review your selections. If everything is to your liking,
click Finish to create the subscription.

Configuring Retention

Once you've created your subscription, you should configure the settings that define
replication's retention. Retention refers to the length of time vital publication data is
kept before being deleted and how long a Subscriber can be offline before becoming
invalid. SQL Server replication supports four retention settings. Three are defined on the
Distributor and one on the Publisher.

The first three distribution retention settings are properties defined in the distribution
database. Therefore, they are global for all Publishers using the same distribution
database. All three are covered in the next section, Configuring retention on the Distributor.

The fourth retention setting is publication-specific and is covered in the later section,
Configuring retention on the Publisher, which follows the section on configuring the
Distributor.

Although none of the retention settings are subscription-specific, they are mentioned
here because they can have a significant impact on your Subscribers. A Subscriber that
does not request an update within the retention period will be deactivated or dropped.
If that happens, a complete resynchronization of the Subscriber is required, making the
data on the Subscriber unavailable during that time.

161

Chapter 7: Transactional Replication – the Subscription

On the other hand, retention settings directly affect how much space you need to
provide for the distribution database because data that has not yet been delivered to all
Subscribers is held in that database for the specified time.

When selecting the replication retention settings, you need to provide your Subscribers
with enough time to load the data from the Distributor. For this, you need to plan in time
for accidental or scheduled outages. But you also need to keep the time short enough so
that the distribution database does not run out of space.

Configuring retention on the Distributor

You configure the minimum and the maximum retention times on the Distributor.
The maximum retention time specifies the time that the replication data is held in
the distribution database if it has not been delivered to all Subscribers. The minimum
retention time (also called transaction retention period) defines the minimum time the
data is kept, even if it already was delivered to all Subscribers.

The minimum retention time is the maximum guaranteed time in which a snapshot
can be used to initialize new or disabled Subscribers. However, if the option Create a
snapshot immediately and keep the snapshot available to initialize subscriptions was
selected during the creation of the publication, every snapshot is valid for at least the
maximum retention time. During this time, the minimum retention time is effectively
ignored. Therefore the distribution database might grow significantly, as the snapshot
requires all the transaction data to be kept, too.

After the snapshot is expired, both the minimum and the maximum retention times are
used again to determine the lifespan of replicated transactions.

162

Chapter 7: Transactional Replication – the Subscription

The following steps explain how to set the retention times on the distribution database:

1. In SSMS, connect to the SQL Server instance that you've configured as the
Distributor.

2. In Object Explorer, right-click the Replication folder for that instance, and then click
Distributor Properties, as shown in Figure 7-11.

 Figure 7-11: Accessing the Distributor's properties.

When the Distributor Properties dialog box appears, it opens to the General page, as
shown in Figure 7-12. The page displays a list of configured distribution databases and
their retention values.

163

Chapter 7: Transactional Replication – the Subscription

 Figure 7-12: The General page of the Distributor Properties dialog box.

3. Click the browse (ellipsis) button at the end of the row that contains
the distribution database whose settings you want to change. This launches the
Distribution Database Properties dialog box, shown in Figure 7-13.

164

Chapter 7: Transactional Replication – the Subscription

 Figure 7-13: Configuring the transaction retention period.

In the Transaction retention section, you can specify the minimum and maximum
retention times, and you can specify whether those values are measured in hours or days.

4. Set the times, click OK to close the Distribution Database Properties dialog box,
and then click OK again to close the Distributor Properties dialog box.

As mentioned before, if there is transactional data in the distribution database that
has not been synchronized with a Subscriber for more than the maximum retention
time, the data will be purged, and the Subscriber will automatically be marked as
inactive. To reactivate an inactive Subscriber, the subscription has to be reinitialized
from a fresh snapshot.

165

Chapter 7: Transactional Replication – the Subscription

If you have a Subscriber that becomes incapable of synchronizing from time to time, as
can occur as the result of scheduled or unscheduled connection interruptions, you need
to set the maximum retention time value high enough to guarantee that the Subscriber
can reconnect before it is deactivated.

On the other hand, the longer the maximum retention time, the more data needs to be
stored and kept in the distribution database. So the higher this value, the more storage
you need for the distribution database. In addition to the distribution database taking up
more hard-drive space, the replication throughput will also decrease.

So you need to find a happy medium between Subscriber availability and storage and
performance requirements when setting this value. The default values for transaction
retention are 0 hours for the minimum and 72 hours for the maximum.

Figure 7-13 also shows a History retention setting. This is the third setting referred to at
the beginning of the discussion on retention. This setting defines how long information
about the health of the replication setup is kept in the distribution database. The setting
does not affect the Subscribers. However, the history data can be helpful in trouble-
shooting issues that might arise. The default of 48 hours is usually a good choice.

The Queue Reader Agent security section at the bottom of the Distribution Database
Properties dialog box is not used in a standard transactional replication installation and
will not be covered in this book.

Configuring retention on the Publisher

Another important retention setting is defined on the publication: the publication
retention period. The setting determines when a subscription is actually removed from
the Distributor if data is not synchronized. The amount of time is usually a lot higher
than the maximum retention setting in the distribution database.

166

Chapter 7: Transactional Replication – the Subscription

For a push subscription, if a subscription lapses past the publication retention period, the
subscription is removed completely from the Distributor and nothing remains. For a pull
subscription, an orphan is left on the Subscriber that must be cleaned up manually. In
either case, if you want to continue to use the instance as the Subscriber, you need to set
it up again from scratch.

The default value for the publication retention period setting is two weeks (336 hours).
The following steps explain how to modify the publication retention period:

1. In SSMS, connect to the SQL Server instance configured as the Publisher.

2. In Object Explorer, expand the Replication folder for that instance, and then expand
the Local Publications subfolder.

3. Right-click the publication you want to change, and then click Properties.

4. When the Publication Properties dialog box appears, it opens to the General page,
as shown in Figure 7-14. Here you can change the description of the publication
as well as configure the retention period, which you do in the Subscription
Expiration section. You can either specify a value (in hours) or set the retention
period never to expire.

167

Chapter 7: Transactional Replication – the Subscription

Figure 7-14: Configuring the retention settings on your publication.

5. Configure the retention setting, and then click OK to close the Publication
Properties dialog box. All your retention settings should now be configured and your
subscription is ready to go.

168

Chapter 7: Transactional Replication – the Subscription

Summary

In this chapter, we worked through the final piece of a replication setup, the subscription.
We discussed how to connect a subscription to a publication, as well as how to select the
subscription type and the subscription database. We reviewed the differences between
push and pull subscriptions and the importance of the retention periods. We also learned
about the security requirements for a subscription.

By the time you get to this point, the first synchronization should be complete. If you
connect to the subscription database, you should see that all the replicated objects have
been created. However, if the database does not contain these objects yet, wait a little
longer. It can take several minutes for the first synchronization to finish, even on a very
small table.

After the first synchronization is completed, you can insert or update a row in the publi-
cation database. After your change has been replicated to the Subscriber, you'll be able to
see it applied in the subscription database.

Transactional replication consists of many parts, including replication agents,
SQL Server Agent jobs and special databases. We have already touched upon most
of the parts. What we haven't yet discussed in detail are the SQL Server Agent jobs
that process the replication agents and keep transactional replication running. Those,
we dive into in Chapter 8.

169

Chapter 8: SQL Server Agent Jobs for
Transactional Replication

In a standard replication installation, SQL Server creates a number of SQL Server Agent
jobs to support the replication process. Many of those jobs are related specifically to the
replication agents. By default, SQL Server creates one job per agent in order to run that
agent. Additionally, SQL Server creates several other jobs to perform various maintenance
tasks related to replication.

In this chapter, you'll learn about the SQL Server Agent jobs used to support replication.
The chapter provides details about each job and shows you how to identify the tasks that
they perform. The chapter also covers the different naming conventions used for the SQL
Server Agent jobs, and discusses when in the setup process each job is created.

SQL Server Agent Jobs

During the replication setup process, SQL Server creates numerous SQL Server Agent
jobs, some related to the replication agents, others related to maintenance tasks that need
to be performed.

Snapshot Agent jobs

By default, SQL Server creates a SQL Server Agent job for each publication in order to
execute the Snapshot Agent. These jobs are named according to the following pattern:

<Server>-<Publication Database>-<Publication>-<number>

170

Chapter 8: SQL Server Agent Jobs for Transactional Replication

If you need to generate a new snapshot for a publication, you can manually run the
Snapshot Agent job associated with that publication, or you can schedule the job to run
at a later time.

Log Reader Agent job

When you set up the first publication in a publication database, SQL Server creates a
single SQL Server Agent job to execute the Log Reader Agent. The job is named according
to the following pattern:

<Publisher>-<Publication Database>-<number>

Any subsequent publications you set up in that publication database will also use this job.

By default, the job is scheduled to start when the SQL Server service starts. That means
the job is always running. Given how SQL Server reuses log space, this is the preferred
setting, which means you should not change this behavior.

Distribution Agent jobs

By default, SQL Server creates a job for each subscription in order to execute the
Distribution Agent. The job runs either on the Distributor (push subscription) or on
the Subscriber (pull subscription). The push subscription distribution jobs are named
according to the following convention:

<Publisher>-<Publication Database>-<Publication>-<Subscriber>-
<number>

171

Chapter 8: SQL Server Agent Jobs for Transactional Replication

The pull subscription distribution jobs follow a slightly different naming pattern:

<Publisher>-<Publication Database>-<Publication>-<Subscriber>-
<Subscription Database>-<GUID>

Replication Maintenance jobs

In addition to the jobs that execute replication agents, SQL Server creates several jobs
related to transactional replication maintenance. Those jobs are mainly tasked with
cleanup and problem detection. Each of these jobs is discussed in more detail below.

Creating the SQL Server Agent Jobs

SQL Server creates the replication-related jobs automatically at various steps during
replication setup. The following sections describe which job is created as part of which
step. To illustrate when and where jobs are created, we've designated the SQL Server
instance SQL1\S12A as the Distributor, SQL2\S12A as the Publisher, and SQL3\S12A as
the Subscriber.

When you first enable SQL Server Agent on a SQL Server instance, the only job that exists
is syspolicy_purge_history. Figure 8-1 shows how that job is listed in the SQL
Server Agent Job Activity Monitor for all three SQL Server instances.

172

Chapter 8: SQL Server Agent Jobs for Transactional Replication

Figure 8-1: The default SQL Server jobs on the Distributor, Publisher, and Subscriber.

Local distribution

When you configure a SQL Server instance to be a Distributor, replication setup creates
several SQL Server Agent jobs, as shown in Figure 8-2.

173

Chapter 8: SQL Server Agent Jobs for Transactional Replication

Figure 8-2: The SQL Server Agent jobs created on the Distributor.

As you can see, six SQL Server Agent jobs have been created on the Distributor:

• Agent history clean up: <distribution database name> – Removes from the
distribution database all history records that keep track of the agents' performance.
The job uses the history retention setting of the distribution database to determine
which records to delete. SQL Server creates one job of this type for each distribution
database on the Distributor.

• Distribution clean up: <distribution database name> – Removes old trans-
action information from the distribution database. The job also checks whether all
Subscribers received each record. Based on the result of that check and the replication
retention settings, the job then determines which records to delete from the distri-
bution database. In addition, the job disables subscriptions that failed to read the
transaction information in time. The job also regularly refreshes the statistics on the
tables in the distribution database. SQL Server creates one job of this type for each
distribution database on the Distributor.

174

Chapter 8: SQL Server Agent Jobs for Transactional Replication

• Expired subscription clean up – Removes subscriptions that fail to connect to the
Subscriber within the publication retention period. This job runs on the Distributor as
well as on the Publisher. SQL Server creates one instance of this job on each server.

• Reinitialize subscriptions having data validation failures – Identifies subscriptions
with data validation errors and sets them up for re-initialization. You can use data
validation to verify data consistency between the Publisher and Subscriber. For more
information, see the topic, Validating Replicated Data in SQL Server Books Online.

• Replication agents checkup – Monitors the replication agents and creates an entry
in the Windows Event Log if any replication agent fails to report its status in the
distribution database.

• Replication monitoring refresher for <distribution database name> – Used by
the replication monitor to refresh cached queries.

Remote distribution

When you configure remote distribution on a Publisher, replication setup creates one
additional SQL Server Agent job to the Publisher, as shown in Figure 8-3.

Figure 8-3: The SQL Server Agent job created for remote distribution.

175

Chapter 8: SQL Server Agent Jobs for Transactional Replication

The Expired subscription clean up job is responsible for removing the Publisher's
metadata of expired subscriptions.

Publication

When you create a publication, SQL Server creates two jobs on the Distributor, but
none on the Publisher, as you can see in Figure 8-4. Remember that SQL1\S12A is the
Distributor and SQL2\S12A the Publisher.

Figure 8-4: Publication-related jobs located only on the Distributor.

176

Chapter 8: SQL Server Agent Jobs for Transactional Replication

The two publication-related jobs are SQL2\S12A-ReplA-2 and SQL2\S12A-ReplA-
MySecondPublication-2. They run the Log Reader Agent and the Snapshot Agent,
respectively.

You can tell which SQL Server Agent job runs which replication agent by referring to
the Category column in the Job Activity Monitor.

Remember, the Snapshot Agent is used to prepare the first synchronization for each
Subscriber. It copies all the schema information and all the data of the published
objects into the snapshot folder. The Log Reader Agent is responsible to read the
log file of the published database and copy all the data necessary to reproduce
the object or data changes in the subscription database. It stores that information
in the distribution database.

Push subscription
When you configure a push subscription, SQL Server creates a single SQL Server Agent
job on the Distributor. The job runs the Distribution Agent. If you refer to Figure 8-5,
you'll see that a new job, SQL2\S12A-ReplA-MyFirstPublication-SQL3\S12A-5, has
been created on SQL1\S12A, which is our Distributor.

Figure 8-5: SQL Server Agent job on the Distributor to support a push subscription.

177

Chapter 8: SQL Server Agent Jobs for Transactional Replication

Figure 8-6 reveals that there are no additional jobs on either the Publisher or
the Subscriber.

Figure 8-6: No subscription-related jobs on Publisher or Subscriber.

As you can see, in the push subscription model all three replication agents live on
the Distributor.

178

Chapter 8: SQL Server Agent Jobs for Transactional Replication

Pull subscription

When you configure a pull subscription, SQL Server again creates only a
single SQL Server Agent job to run the Distribution Agent, but this time it's
located on the Subscriber. Figure 8-7 shows the Job Activity Monitor for the
Distributor (SQL1\S12A) and the Subscriber (SQL3\S12A). In this case, the name
of the job is rather long: SQL2\S12A-ReplA-MySecondPublication-SQL3\
S12A-ReplB-CCEFBC29-C803-4A32-B743-FF86A59071BF.

Figure 8-7: SQL Server Agent job on the Subscriber to support a pull subscription.

179

Chapter 8: SQL Server Agent Jobs for Transactional Replication

Again, if you want to identify which SQL Server Agent job is associated with which
replication agent, check the Category column.

Summary

In this chapter we discussed all the different SQL Server Agent jobs that are responsible
for executing the replication agents as well as performing other maintenance tasks. We
discovered when each job is created during the replication setup process and how to tell
what each job's purpose is.

This chapter closes the section on transactional replication. The next few chapters will
walk you through everything you need to know about merge replication.

180

Chapter 9: Merge Replication – the
Replication Agents

Similar to the replication agents used in transactional replication, merge replication
agents are external programs that facilitate data movement across the SQL Server
instances participating in replication. However, in merge replication, the agents also
utilize a special set of triggers, tables, and views implemented specifically to support
merge replication. These components are unique to merge replication and are not used in
transactional replication.

When you run the replication setup wizards, SQL Server automatically creates the
necessary merge replication agents, the SQL Server Agent jobs that run those agents,
and the set of triggers, tables, and views that the agents use.

In this chapter, you'll learn about the replication agents and the other components that
support the merge replication process. The chapter explains what each component is, the
role it plays, and how it interacts with other components to facilitate merge replication.

Merge Replication Components

In transactional replication, the Snapshot Agent creates the initial snapshot required
to initialize the Subscribers. The Log Reader Agent and the Distribution Agent together
facilitate the actual data movement from the Publisher to the Subscriber. For an in-depth
explanation of the replication agents that support transactional replication, refer back to
Chapter 4.

181

Chapter 9: Merge Replication – the Replication Agents

A merge replication setup looks a little different. It includes the following components:

• Snapshot Agent

• Triggers, tables, and views

• Merge Agent.

The Snapshot Agent used in merge replication plays the same role as in transactional
replication: it creates a snapshot of the data in the publication database, which is required
to initialize or reinitialize a Subscriber.

In merge replication, the role that the Log Reader Agent fills in transactional replication is
taken by a set of triggers, tables, and views. These objects are added to each subscription
database as well as to the publication database.

The Merge Agent is comparable to the Distribution Agent in transactional replication.
It applies the collected changes to the Subscriber. Because merge replication is
bi-directional, the Merge Agent also applies changes to the Publisher as required.

Figure 9-1 provides an overview of how these components work together.

182

Chapter 9: Merge Replication – the Replication Agents

Figure 9-1: Merge replication agents and triggers.

The arrows in Figure 9-1 show how the replication agents work with the data. The arrows
reflect the direction of the data flow; the green arrows indicate read access, whereas the
red arrows indicate write access. The Merge Agent lives on either the Distributor or the
Subscriber, depending on the subscription model.

Let's look a little closer at each of these components to better understand how they work.

183

Chapter 9: Merge Replication – the Replication Agents

Snapshot Agent

As in transactional replication, merge replication uses the Snapshot Agent to generate
a snapshot of the data in the publication database. Merge replication then uses the
snapshot to initialize the subscription database. As in transactional replication, there are
other ways to execute the initial synchronization. However, using the Snapshot Agent is
certainly the most convenient way.

Compared to transactional replication, there is one important difference in how merge
replication uses the Snapshot Agent. In transactional replication, the Snapshot Agent
uses concurrent processing, which means it doesn't take any extended locks on the
published articles. This technique relies on markers written to the database log during
the snapshot generation. The Log Reader Agent picks up these markers, and the Distri-
bution Agent then uses the markers to figure out which changes still need to be applied
to the Subscriber and which changes were already picked up by the Snapshot Agent. (See
Chapter 4 for more details about how this technique works.)

Because merge replication does not use the Log Reader Agent, it cannot use these
markers and concurrent snapshot processing is therefore not an option. As a result, the
Snapshot Agent takes a lock on all published tables during a portion of the time it takes
to generate the snapshot. This ensures transactional consistency between the publication
and subscription databases.

This description is a stark oversimplification of what is actually going on during snapshot
creation. Most of the locks are not actually taken on the published tables. Instead, they're
taken on the metadata tables created by merge replication to hold the information
about data changes. Even so, the locks still block other transactions trying to write to
the published tables because those transactions would fire the merge replication triggers
that write to the metadata tables. However, those locks do not interact with other
reading transactions.

184

Chapter 9: Merge Replication – the Replication Agents

In addition, the length that each lock is taken has nothing to do with the amount of data
in the published tables. Instead, it depends on the amount of data in the metadata tables,
which is directly related to the amount of changes in the published tables since the last
synchronization. Because of this, the Snapshot Agent is able to hold on to the locks for a
shorter time in most cases. SQL Server Books Online gives a little more insight into this
process, although it's not too detailed about it either.

The important point to take away is that the published tables cannot be updated during
the time those locks are held. Processes attempting to update any of the published tables
(or to change non-table articles) are therefore going to be blocked. Because of this locking
behavior, you should try to schedule the snapshot generation to run during off-peak
hours. Chapter 10 explains how to do this.

For each publication, SQL Server creates a SQL Server Agent job to execute the Snapshot
Agent. Replication names these jobs based on the following pattern:

<Server>-<Publication Database>-<Publication>-<number>

If you need to generate a new snapshot, you can manually start the Snapshot Agent job
for the publication, or you can schedule the job to run at a later time.

Triggers, tables, and views

When you configure merge replication, SQL Server adds a set of triggers, tables, and views
to the publication database in order to monitor and record changes to the published
articles. Because merge replication permits data to flow from the Publisher to the
Subscriber as well as from the Subscriber to the Publisher, the same set of objects is also
added to each subscription database.

185

Chapter 9: Merge Replication – the Replication Agents

Replication defines three triggers on every published table. The triggers conform to the
following naming convention:

MSmerge_???_FA62745126C846858453EEF185F94618

The long hexadecimal number at the end of the name is the internal article identifier. The
question marks (???) serve as a placeholder for one of the following three values:

• del (for delete trigger)

• ins (for insert trigger)

• upd (for update trigger).

These triggers are responsible for recording every change that is applied to the data in the
published tables.

Replication also creates the following database triggers to capture any schema changes to
the published articles:

• MSmerge_tr_alterschemaonly

• MSmerge_tr_altertable

• MSmerge_tr_altertrigger

• MSmerge_tr_alterview

The changes recorded by the triggers are not applied to the Subscribers right away.
Instead, data that can be used to identify which records and columns changed is stored in
replication metadata tables in the database in which the change happened. The names of
all these tables begin with MSmerge_. Replication also creates several system views that
follow the same naming pattern. These views are used by the internal merge replication
processes. For more information about the triggers, tables, and views specific to merge
replication, refer to SQL Server Books Online.

186

Chapter 9: Merge Replication – the Replication Agents

Merge Agent

The Merge Agent uses the information recorded by the database triggers to synchronize
the changes between the Publisher and all its Subscribers. The Merge Agent, like the other
replication agents, is an autonomous program separate from the SQL Server service.

By default, SQL Server creates a SQL Server Agent job for each subscription to execute
the Merge Agent. The job runs either on the Distributor (for push subscriptions) or on the
Subscriber (for pull subscriptions). The push subscription jobs conform to the following
naming convention:

<Publisher>-<Publication Database>-<Publication>-<Subscriber>-
<number>

The naming convention for pull subscription jobs looks a little different:

<Publisher>-<Publication Database>-<Publication>-<Subscriber>-
<Subscription Database>-<number>

In both cases, the <number> placeholder represents a number, usually a small one, used
to prevent name collisions.

187

Chapter 9: Merge Replication – the Replication Agents

Summary

This chapter introduced the different components that support the merge replication
process and showed how those components interact to make merge replication work.

We talked about the Snapshot Agent and how it must take table locks to prevent changes
to the underlying data while it generates the snapshot. As you've seen, there is a signif-
icant difference between the initialization of a merge replication setup and a transac-
tional replication setup. We also talked about the Merge Agent and the different triggers
that it relies on to record changes to the data in the replicated tables or changes to the
replicated objects themselves.

In the chapters to follow, you'll learn how to set up merge replication so you can see for
yourself the merge components in action.

188

Chapter 10: Merge Replication – the
Publication

Merge replication, like transactional replication, involves a Distributor, a Publisher,
and one or more Subscribers. On each Publisher, you can define one or more publica-
tions. Those publications can include merge publications, transactional publications,
snapshot publications, or any combination of the three. As with transactional replication,
merge replication requires that the articles in a publication reside in a single database.
You can, however, define different publications on different databases or even multiple
publications on the same database. You can also include the same article in more
than one publication. But, as mentioned before, all publications on a single Publisher,
regardless of their type, must use the same Distributor and distribution database.

Merge replication was designed to allow client systems (Subscribers) to work in a state
disconnected from the main server system (Publisher). When the Subscribers reconnect
to the Publisher, changes on the Publisher are copied to the Subscribers, and vice versa.
This process allows for real asynchronous synchronization and therefore uninhibited
work while disconnected. However, any form of bi-directional synchronization can result
in conflicts, such as the same record being updated on the Publisher and a Subscriber at
the same time, or on two Subscribers at the same time. To address such issues, merge
replication includes a set of "conflict resolvers" that can automatically handle conflicts
based on a set of rules.

As you'll recall from previous chapters, transactional replication makes use of the SQL
Server transaction log to replicate data changes to the Subscribers. In contrast, merge
replication does not keep a record of the changes but instead works with the data in
the published tables when the synchronization is performed. This helps to reduce the
storage requirements on each server while being disconnected from the rest of the
replication setup. However, it does introduce some storage overhead and inflexibility,

189

Chapter 10: Merge Replication – the Publication

because there needs to be a way to identify records that changed between synchroniza-
tions. Chapter 9 explains how this process works.

In this chapter, you'll learn how to set up a merge publication and how to add articles to
that publication. We'll also cover where you select the conflict resolver for each article and
how to decide if that article is going to be synchronized bi-directionally or one way only.

To perform the exercises in this chapter, you need a database that contains objects you
can replicate. We'll be using the ReplM database, which you can create by running the
script in Listing 10-1.

USE MASTER;
GO
EXECUTE AS LOGIN = 'SA';
GO
CREATE DATABASE ReplM;
GO
USE ReplM;
GO
CREATE TABLE dbo.Tbl1(
 Id INT IDENTITY(1,1) PRIMARY KEY,
 Data INT CONSTRAINT Tbl1_Data_Dflt DEFAULT CHECKSUM(NEWID()),
 Data2 INT CONSTRAINT Tbl1_Data2_Dflt DEFAULT CHECKSUM(NEWID()),
 Data3 INT CONSTRAINT Tbl1_Data3_Dflt DEFAULT CHECKSUM(NEWID())
);

GO
INSERT INTO dbo.Tbl1 DEFAULT VALUES;
GO 1000
GO
CREATE TABLE dbo.Tbl2(
 Id INT IDENTITY(1,1) PRIMARY KEY,
 Data INT CONSTRAINT Tbl2_Data_Dflt DEFAULT CHECKSUM(NEWID()),
 Data2 INT CONSTRAINT Tbl2_Data2_Dflt DEFAULT CHECKSUM(NEWID()),
 Data3 INT CONSTRAINT Tbl2_Data3_Dflt DEFAULT CHECKSUM(NEWID())
);

190

Chapter 10: Merge Replication – the Publication

GO
INSERT INTO dbo.Tbl2 DEFAULT VALUES;
GO 1000
GO
CREATE PROC dbo.Proc1
AS
BEGIN
 INSERT INTO dbo.Tbl1 DEFAULT VALUES;
END;
GO
CREATE VIEW dbo.View1
AS
 SELECT Id, Data
 FROM dbo.Tbl1
 WHERE Id > 500;
GO
CREATE VIEW dbo.View2 WITH SCHEMABINDING
AS
 SELECT Id, Data
 FROM dbo.Tbl2
 WHERE Id < 500;
GO
CREATE UNIQUE CLUSTERED INDEX [dob.View2(Id):CI] ON dbo.View2(Id);
GO
CREATE FUNCTION dbo.Func1()
RETURNS INT
AS
BEGIN
 DECLARE @r INT = (SELECT MAX(Id) FROM dbo.Tbl2);
 RETURN @r;
END;
GO
USE MASTER;
GO
REVERT;
GO

Listing 10-1: Creating a test database for the merge publication.

191

Chapter 10: Merge Replication – the Publication

Enabling a Database for Merge Replication

Similar to transactional publications, any member of a database's db_owner role can
create a merge publication in that database. However, before that can happen, the
database needs to be enabled for merge replication by a member of the sysadmin fixed
server role.

Our first task, then, is to enable the ReplM database for merge replication. To perform
this task, you need to be a member of the sysadmin fixed server role on the Publisher. In
addition, you must have already set up the SQL Server instance hosting this database as
a Publisher linked to your Distributor. Refer back to Chapter 3 for details on this second
requirement.

Once your environment is ready, you can enable the ReplM database for merge repli-
cation. The following steps walk you through that process:

1. In SQL Server Management Studio (SSMS), connect to the SQL Server instance you
have designated as your Publisher for this exercise. The examples in this chapter use
the SQL Server instance SQL2\S12A as the Publisher.

2. In Object Explorer, right-click the Replication folder for that instance, and then click
Publisher Properties, as shown in Figure 10-1.

192

Chapter 10: Merge Replication – the Publication

Figure 10-1: Accessing the Publisher Properties in Object Explorer.

3. In the Publisher Properties dialog box, go to the Publication Databases page, and
select the Merge check box in the row associated with your database. Figure 10-2
shows the Merge check box selected for the ReplM database, the database we created
at the beginning of this chapter.

193

Chapter 10: Merge Replication – the Publication

Figure 10-2: Enabling a database for merge replication.

4. After you have made your selection, click OK to close the Publisher Properties
dialog box.

Now that you've enabled the database for merge replication, any member of the
db_owner role associated with that database can define a publication on it.

194

Chapter 10: Merge Replication – the Publication

Creating a Publication

You're now ready to create a merge publication. The rest of the chapter walks you
through the steps necessary to add a publication to the ReplM database. For all these
steps, we'll use the New Publication Wizard. The wizard is the simplest way to create a
publication, although there are still a number of steps that must be performed. For that
reason, we've grouped the steps into the following exercises: adding a publication to the
publication database, adding articles to that publication, configuring the Snapshot Agent
and its security, and finalizing your publication. After performing these exercises, you'll
have a working publication that is ready to be subscribed to.

Adding a publication

After launching the New Publication Wizard, your first steps will be to create the initial
publication in your publication database and then to select Merge Replication as its type.
The following steps walk you through that process:

1. In Object Explorer, expand the Replication folder of the SQL Server instance that
holds the database you want to publish. (This is the same database you enabled in the
previous task.)

2. Right-click the Local Publications subfolder, and click New Publication, as shown in
Figure 10-3.

195

Chapter 10: Merge Replication – the Publication

Figure 10-3: Launching the New Publication Wizard.

3. If the first page of the New Publication Wizard is the Welcome page, click Next to
advance to the Publication Database page, shown in Figure 10-4. If you want, you can
also select the option to disable the Welcome page so it doesn't appear when you use
the wizard in the future.

196

Chapter 10: Merge Replication – the Publication

Figure 10-4: Choosing the publication database.

4. On the Publication Database page, select the database in which you want to define
your publication. For the exercises in this chapter, we're using the ReplM database,
the same database we enabled for merge replication in the previous task.

197

Chapter 10: Merge Replication – the Publication

5. Click Next to advance to the Publication Type page, shown in Figure 10-5. This is
where we select the publication type.

Figure 10-5: Selecting Merge publication as the publication type.

Up to this point, the steps for creating a merge publication have been very similar to those
used to create a transactional publication. That, however, will change as we continue
working through the wizard.

198

Chapter 10: Merge Replication – the Publication

6. Select the Merge publication option on the Publication Type page, and then click
Next to advance to the Subscriber Types page, shown in Figure 10-6.

Figure 10-6: Selecting the Subscriber types that can use your publication.

On the Subscriber Types page, you select one or more SQL Server versions that the
publication will support. Any Subscriber that connects to this publication must be
running one of these versions. Note, however, that any selection other than SQL Server
2008 will cause the publication to run with reduced functionality. (SQL Server 2012
did not introduce any new functionality.) For details about these restrictions, refer
to SQL Server Books Online.

7. Select one or more Subscriber types. For these exercises, we've selected only the SQL
Server 2008 or later option. If possible, you should try to follow the same strategy so
you can benefit from all the functionality now available to merge replication.

199

Chapter 10: Merge Replication – the Publication

Note that, if your publication database already contains a merge publication, the
Subscriber Types page might show a reduced number of options. That's because, with
few exceptions, all merge publications in the same database need to use the same
Subscriber types, and if a merge publication has already been defined, that publication's
configuration settings will determine which options are available here.

8. Click Next to advance to the Articles page, which is covered in the next section.

Adding articles to your publication

After you select the Subscriber types, you must choose the database objects that you want
to include in the publication. As in transactional replication, every object that is part of a
merge publication is called an article.

In merge replication, most of the objects are schema-only articles. That means that only
the object's definition is replicated to the Subscriber, but nothing else. Transactional
replication, for example, allows procedure executions to be replicated. This is not possible
with merge replication. The only article type that allows for more than just the definition
to be replicated is the table; a table article will replicate schema as well as data changes.

The main reason for this restriction is the way merge replication works. Transactional
replication reads the transaction log and therefore has access to a detailed list of every
action that happened in that database in chronological order.

Merge replication relies instead on a series of table triggers to capture data changes. It
also uses object-level triggers that can capture schema changes of those objects but no
other interaction with them, such as stored procedure executions. While this approach
has limitations in some areas, as we have seen above, it is also more flexible in other
places. For example, you can replicate tables that do not contain a primary key, something
not possible with transactional replication. (For more details about the inner workings of
merge replication, refer back to Chapter 9.)

200

Chapter 10: Merge Replication – the Publication

To add articles to your publication, take the following steps:

1. If you have not already done so, advance to the Articles page in the New Publi-
cation Wizard. The Articles page should look similar to the one shown in Figure 10-7.

Figure 10-7: Selecting the articles for your publication.

On the Articles page, you can select tables, stored procedures, views, indexed views,
and user-defined functions to be replicated to your Subscribers. For now, select only the
dbo.Tbl1 table.

2. As with transactional replication, you can replicate a table in its entirety or you can
select individual columns to be replicated (vertical filter). For this exercise, we'll
include a couple of columns from the dbo.Tbl2 table, so expand the column list for
that table by clicking the plus sign next to the table name. Then select columns Id
and Data2. Figure 10-8 shows the selected columns on the Articles page.

201

Chapter 10: Merge Replication – the Publication

Figure 10-8: Selecting columns to be included in your table article.

When you highlight a table that is selected as an article, the Highlighted table is
download-only option appears beneath the Article Properties button. If you select this
option, changes to the table's data are not permitted on the Subscriber.

You should select this option for any table that contains data that should not be changed
on the Subscriber(s). This selection causes significantly less data to be collected on the
Publisher because there is no need to maintain data to help resolve conflicts. (A conflict
occurs when a row is changed in more than one place at a time. If the Publisher is the
only place where data changes can be made, conflicts cannot happen. See Chapter 12 for
details on conflicts.) Not permitting changes to the replication data on the Subscriber
side can therefore have a dramatic impact on performance and space requirements on
the Publisher.

202

Chapter 10: Merge Replication – the Publication

You can also set this option in the article's properties. To access the properties, ensure
that the table article is selected in the Objects to publish list, click the Article Properties
button, and then click Set Properties of Highlighted Table Article. This launches the
Article Properties dialog box, shown in Figure 10-9.

Figure 10-9: Selecting a synchronization direction.

203

Chapter 10: Merge Replication – the Publication

The article property that corresponds to the Highlighted table is download-only option
is Synchronization direction. The property supports the following three settings:

• Bi-directional

• Download-only to Subscriber, allow Subscriber changes

• Download-only to Subscriber, prohibit Subscriber changes.

The Highlighted table is download-only option essentially lets you toggle between the
first and the last setting. If you were to manually select the second setting, changes on
the Subscriber would be allowed, but would not be transferred back to the Publisher and
might be overwritten.

The fact that this option has a single check box alternative on the Articles page of the
wizard shows the importance of selecting the appropriate setting for your articles.

Of course, there are other important properties you can also configure on an article.
As you can see in Figure 10-9, the Article Properties dialog box includes numerous
settings for an article in a merge publication, just as it does for an article in a transactional
publication. (For a complete list of the available options for each object type, refer to
SQL Server Books Online.) But notice that, for a merge article, the dialog box also
includes the Resolver tab, which is not available for transactional publications. Here, you
can specify how conflicts should be handled for each article by selecting a resolver, as
shown in Figure 10-10. (Resolvers are covered in Chapter 12.)

204

Chapter 10: Merge Replication – the Publication

Figure 10-10: Determining how to handle merge conflicts.

3. Click the Cancel button to close the Article Properties dialog box and return to the
Articles page of the New Publication Wizard. On the Articles page make sure that
the Highlighted table is download-only option is checked for dbo.Tbl2, as shown in
Figure 10-8, and then click Next.

4. The next page to appear in the New Publication Wizard is the Article Issues page,
which provides you with any warnings that might apply to your publication. While
there are several possible warnings that can be displayed here, you're most likely to
see the one shown in Figure 10-11 when you're setting up a merge publication.

205

Chapter 10: Merge Replication – the Publication

Figure 10-11: Receiving a uniqueidentifier warning.

The warning tells you that merge replication requires each replicated table to include a
uniqueidentifier column configured with the ROWGUIDCOL property and a unique
index. If such a column does not exist, SQL Server will automatically add it when the first
snapshot is generated. That change can potentially break existing code accessing those
tables. It will also increase the size of the table by at least 16 bytes per row.

206

Chapter 10: Merge Replication – the Publication

Warning

If you ever drop the merge publication, every uniqueidentifier column that was automatically

added to its articles will be removed automatically as well. This has the potential of breaking any code

that was written after replication was established and that now relies on those columns being there. For

that reason, it's a good practice to manually add those columns before you set up merge replication. That

way, you have full control over the columns and if and when they get dropped.

5. For this exercise, we'll accept the default behavior and let SQL Server add the
necessary columns. Click Next to advance to the Filter Table Rows page.

6. On the Filter Table Rows page (shown in Figure 10-12), you can add row level filters to
your table articles. The page appears only if you've added at least one table article to
the publication.

 Figure 10-12: The Filter Table Rows page of the New Publication Wizard.

7. Click the Add button, and then click Add Filter to open the Add Filter dialog box.

207

Chapter 10: Merge Replication – the Publication

8. In the Add Filter dialog box, select Tbl2 (dbo) from the Select the table to filter
drop-down list. You can then add a row filter, in the Filter statement windows.
A row filter, or horizontal filter, looks like a SELECT statement that includes a
WHERE clause, as shown in Figure 10-13. However, you can edit only the code
after the WHERE keyword.

Figure 10-13: Adding a filter to your publication.

9. The purpose of the column list on the left side of the Add Filter dialog box is to help
you with remembering (and typing) the column names of the current article. The
selected column does not affect the functionality of the filter.

10. Complete the query so it matches what is shown in Figure 10-13, and then click OK.
This filter will cause only rows that have an even number value in the Id column to
get replicated.

208

Chapter 10: Merge Replication – the Publication

11. When you're returned to the Filter Table Rows page, it should now show that there is
a filter defined for the table dbo.Tbl2, as shown in Figure 10-14.

Figure 10-14: Adding a filter to your publication.

12. Click Next to advance to the Snapshot Agent section of the wizard, which we
cover in the next section.

209

Chapter 10: Merge Replication – the Publication

Configuring the Snapshot Agent

In the next part of the New Publication Wizard, you configure the Snapshot Agent. This
process is almost identical to the steps you took to set up the agents for transactional
replication. However, two differences stand out.

First, when you're setting up merge replication, the wizard by default configures the
Snapshot Agent to create a snapshot immediately and to create a new one every 14 days,
which is different from what you saw for transactional replication. Because merge repli-
cation is primarily meant for clients that are often disconnected from the Publisher, the
likelihood that a resynchronization will be necessary is much higher than for always
connected transactional Subscribers. Therefore, in merge replication, it's a good practice
to regularly generate a new snapshot so a fresh one is available when needed. That way,
you don't have to run the Snapshot Agent during high traffic times if the need for a
snapshot arises. See the Snapshot Agent section in Chapter 9 for more information.

The second way that merge replication is different from transactional replication is that
merge replication does not use the Log Reader Agent. Therefore, when you configure
agent security, you'll find only the Snapshot Agent.

The Snapshot Agent used for merge replication requires the same access rights as the
Snapshot Agent used for transactional replication. Any account you assign to the agent
must be a member of the db_owner fixed database role in the publication and distri-
bution databases. The account that the agent runs under must also have write access to
the snapshot folder.

210

Chapter 10: Merge Replication – the Publication

The following steps explain how to configure the Snapshot Agent:

1. If necessary, advance to the Snapshot Agent page of the New Publication Wizard.
As you can see in Figure 10-15, you can select whether a snapshot should be created
immediately, and you can schedule future snapshots. By default, both options
are selected.

 Figure 10-15: Configuring the Snapshot Agent.

2. Leave the default schedule settings (immediate, and every 14 days), and click Next to
advance to the Agent Security page, shown in Figure 10-16.

211

Chapter 10: Merge Replication – the Publication

 Figure 10-16: Configuring security for the Snapshot Agent.

3. Click the Security Settings button to open the Snapshot Agent Security dialog box,
shown in Figure 10-17.

212

Chapter 10: Merge Replication – the Publication

 Figure 10-17: Configuring security for the Snapshot Agent.

4. Type the Windows account that the snapshot should run under. For these exercises,
we're using the domain\SQL2_S12A_Snapshot account.

5. In the Connect to the Publisher section, select the option By impersonating the
process account. Note that, as with transactional replication, instead of using imper-
sonation you might have to specify a SQL Server login in some cases, such as when
the Publisher and Distributor are in different domains.

6. Click OK to close the Snapshot Agent Security dialog box. You're returned to the
Agent Security page of the New Publication Wizard.

7. Click Next to continue to the final section of the New Publication Wizard, which we
cover in the following few paragraphs.

213

Chapter 10: Merge Replication – the Publication

Finalizing your publication

The last few pages of the wizard are identical to the ones used by the New Publication
Wizard when creating a transactional publication. You must specify what action the
wizard should take when you are finished, and you must provide a name for the publi-
cation. The following steps explain how to finish setting up merge replication:

1. If necessary, advance to the Wizard Actions page, and select the option Create the
publication, as shown in Figure 10-18. Then click Next.

Figure 10-18: Choosing the action to be taken at the end of the wizard.

214

Chapter 10: Merge Replication – the Publication

2. On the Complete the Wizard page, type a name for your publication. In this case,
we've used MyFirstMergePublication, as shown in Figure 10-19.

 Figure 10-19: Specifying a publication name and reviewing the options.

3. Review the actions listed on the Complete the Wizard page, and then click Finish.
The Creating Publication page appears and provides details about the publication
creation process, as shown in Figure 10-20.

215

Chapter 10: Merge Replication – the Publication

 Figure 10-20: Creating the publication.

4. Before long, the Creating Publication page should show the steps executed and
whether they were successful. If everything succeeded, click Close to close the wizard.

5. At this point, you have successfully created a merge publication. The next step is to
create a subscription for this publication, which is the topic of Chapter 11.

216

Chapter 10: Merge Replication – the Publication

Potential Problems

As with transactional replication, there are a lot of things that can go wrong when setting
up merge replication. The most common problem to occur in merge replication, as well
as in transactional replication, is that one of the specified accounts or logins does not
have the appropriate permissions. (If you followed the example, you have specified only
one account so far, the one used for the Snapshot Agent.)

If you run into problems, make sure all accounts used have the appropriate rights granted.
For details on how to troubleshoot problems, review the Potential Problems section in
Chapter 5, which covers problems you might run into when setting up a transactional
publication. Most of the suggestions there can be helpful for merge replication as well.
For more in-depth troubleshooting help, check out Chapter 14.

Summary

This chapter demonstrated how to create a publication for merge replication and how
to add articles to that publication. The chapter listed the different types of articles and
discussed their synchronization options. It also pointed out the differences from setting
up a publication for transactional replication.

As with transactional replication, after doing all the work to set up a merge publication,
there's not a lot to show for your efforts. To see something happening, you also need at
least one subscription. In the next chapter, you'll learn how to set up a subscription to
support merge replication.

217

Chapter 11: Merge Replication – the
Subscription

In Chapter 10, we created a publication to support our merge replication setup. Our
next step is to create a subscription, just like we did for transactional replication. To
do this, we first need to designate a SQL Server instance to be the Subscriber. As with
transactional replication, any instance on which a subscription is defined is considered
a Subscriber, and the database that the published changes are applied to is called the
subscription database.

Setting up a Subscription

To set up a subscription to support merge replication, we must perform a number of
steps, such as selecting the Publisher, choosing the subscription type and subscription
database, and configuring security. For most of these steps, we'll use the New
Subscription Wizard, which walks us through the process of setting up the subscription.
In addition to running the wizard, we'll need to take a few other steps to set up our
subscription, such as setting up the Publication Access List (PAL) and configuring
retention. After we've completed all these steps, we'll have a working merge replication
setup with a single Subscriber and a single subscription.

The permissions you need to set up a merge subscription are very similar to the ones
needed for a transactional subscription. In this chapter, we're going to create a pull
subscription, as that is the more common scenario for merge replication. Therefore, we
assume for the rest of the chapter that you have at least db_owner level permissions in
the subscription database and that you are a member of the PAL for the publication we
created in the previous chapter. For more details on how to add your account to the PAL,
refer back to Chapter 6. For the permissions required to set up a push merge subscription,
refer to SQL Server Books Online.

218

Chapter 11: Merge Replication – the Subscription

Selecting the Publisher

We'll start the process of setting up our subscription by opening the New Subscription
Wizard and identifying the Publisher, publication database, and publication itself. The
following steps walk you through this process:

1. In SQL Server Management Studio (SSMS), connect to the SQL Server instance you
have designated as your Subscriber.

2. In Object Explorer, expand the instance folder and then the Replication folder.
Right-click Local Subscriptions and then click New Subscriptions, as shown in
Figure 11-1.

Figure 11-1: Launching the New Subscription Wizard from Object Explorer.

219

Chapter 11: Merge Replication – the Subscription

3. When the New Subscription Wizard appears, advance to the Publication page,
shown in Figure 11-2. This page is where you identify the Publisher, the publication
database, and the publication.

Figure 11-2: Identifying the Publisher on the Publication page.

4. At the top of the Publication page is the Publisher drop-down list, where you
select the Publisher. The list contains the name of the SQL Server instance you're
currently connected to (the Subscriber), along with an option for finding a SQL Server
Publisher and an option for finding an Oracle Publisher.

5. Note that the SQL Server instance shown in Figure 11-2, SQL3\S12A, is the instance
that I've designated on my system as the Subscriber. You should see the instance
you've set up as your Subscriber listed in the drop-down list.

220

Chapter 11: Merge Replication – the Subscription

6. From the Publisher drop-down list, click the Find SQL Server Publisher option. This
opens a standard Connect to Server dialog box, where you can select your Publisher,
as shown in Figure 11-3.

Figure 11-3: Connecting to your subscription's Publisher.

7. Select your Publisher, provide the necessary authentication information, and then
click Connect. You're returned to the Publication page of the New Subscription
Wizard. The Publisher's publication database and any configured publications
associated with that database now appear in the Databases and publications window,
as shown in Figure 11-4.

221

Chapter 11: Merge Replication – the Subscription

Figure 11-4: Selecting your subscription's publication.

As you can see in Figure 11-4, the SQL Server instance that I've configured as my Publisher
is SQL2\S12A. The publication database associated with that Publisher is ReplM, and the
publication associated with that database is MyFirstMergePublication.

8. Expand the folder associated with your publication database, and then select the
merge publication you created in Chapter 10. Click Next to advance to the Merge
Agent Location page of the wizard, which we cover in the next section.

222

Chapter 11: Merge Replication – the Subscription

Selecting the Merge Agent location

As you'll recall from Chapter 7, you don't have to select the replication type when
creating a subscription to a transactional publication because the type is defined by the
publication. However, you do have to choose between the push and pull subscription
models. The same is true for merge replication.

For transactional replication, the difference between a push subscription and a pull
subscription is the location where the Distribution Agent runs. Merge replication does
not use the Distribution Agent. Instead, every subscription has its own Merge Agent.
Therefore, when you choose between a push or pull merge subscription, you're choosing
where the Merge Agent runs. For a push subscription, the Merge Agent runs at the
Distributor. For a pull subscription, the agent runs at its Subscriber.

Having each agent run at its own Subscriber gives the Subscriber full control over
when the synchronizations occur, while reducing the stress on the Distributor. Because
merge replication is designed primarily for the "work disconnected – synchronize when
connected" model, a pull subscription is most often the preferred choice.

As it is the case with transactional replication, a single publication can support both push
Subscribers and pull Subscribers.

For this exercise, we'll set up our subscription as a pull subscription so the Merge Agent
runs on the Subscriber, as described in the following steps:

1. If you haven't already done so, advance to the Merge Agent Location page of the New
Subscription Wizard, as shown in Figure 11-5. The page lets you choose between the
push and the pull subscription models.

223

Chapter 11: Merge Replication – the Subscription

Figure 11-5: Specifying the Merge Agent location.

2. Select the option, Run each agent at its Subscriber (pull subscriptions).

3. Note that the subscription type you select here will result in minor differences in
some of the wizard pages that follow the Merge Agent Location page. However,
because the differences are so minor, we won't be covering them here.

4. Click Next to advance to the Subscribers page of the wizard, which we cover in the
following section.

224

Chapter 11: Merge Replication – the Subscription

Specifying the target database

In this section, we'll walk through the steps necessary to select the Subscriber and the
subscription database. We'll make these selections on the Subscribers page of the New
Subscription Wizard. The page lets you select multiple Subscribers and their subscription
databases. However, we will cover only the "single Subscriber" scenario.

The following steps describe how to select your Subscriber and subscription database:

1. If you haven't already done so, advance to the Subscribers page of the New
Subscription Wizard, shown in Figure 11-6.

Figure 11-6: Selecting the Subscriber and subscription database.

225

Chapter 11: Merge Replication – the Subscription

2. When the Subscribers page appears, the SQL Server instance from which you
launched the New Subscription Wizard is listed in the Subscribers and subscription
databases grid. On my system this is the SQL3\S12A instance. Ensure that the check
box next to the Subscriber name is selected.

3. The Subscription Database drop-down list associated with the Subscriber lists
all databases on the selected instance and allows you to select your subscription
database. If you need to create a new database, you can do so by selecting the New
database option. That option launches the New Database Wizard, which walks you
through the process of creating the database.

4. When you pick an existing database, be careful to pick the correct one. Replication's
initialization step drops and re-creates all objects that are part of the publication in
the subscription database. If you pick the wrong database and that database contains
objects with the same names as replicated objects, the objects in the target database
are dropped. There is no warning about this anywhere in the process.

5. After selecting your subscription database, click Next to advance to the Merge Agent
Security page. We cover security in the next section.

Configuring security

The next step in setting up our subscription is to configure Merge Agent security, which
involves selecting the accounts and logins that replication will use to connect to the
various databases participating in our replication setup. As always, it's a best practice to
use different accounts for each Merge Agent and grant only the required permissions to
each account.

To configure Merge Agent security, we'll use the Merge Agent Security page of the New
Subscription Wizard. Each Subscriber that you selected in the previous step is listed on
this page. For each Subscriber, you must select the accounts that the Merge Agent should
use. In this case, because we selected only one Subscriber, we need to configure security
for that one only.

226

Chapter 11: Merge Replication – the Subscription

The following steps walk you through the process of setting up Merge Agent security for
your Subscriber:

1. If you haven't already done so, advance to the Merge Agent Security page of the New
Subscription Wizard, shown in Figure 11-7. The page lets you to specify the account
used to run the Merge Agent associated with each Subscriber and the accounts used
by that agent to connect to the Publisher, Distributor, and Subscriber.

Figure 11-7: Specifying the accounts used by the Merge Agent.

2. In the Subscription properties grid you'll find the Subscriber you selected on the
previous pages. (Again, my Subscriber is SQL3\S12A.)

3. Initially, no accounts are associated with the Subscriber's Merge Agent. To add the
accounts, click the ellipsis button at the end of the row to launch the Merge Agent
Security dialog box.

227

Chapter 11: Merge Replication – the Subscription

4. The Merge Agent Security dialog box lets you specify the accounts used to run the
Merge Agent and connect to the various SQL Server instances, as shown in Figure
11-8. Note that the figure shows the dialog box as it appears for a pull subscription.
The dialog box is slightly different for a push subscription. However, because the
differences are minor, we'll stick with only the version shown here.

Figure 11-8: Selecting the Merge Agent security properties for a pull subscription.

228

Chapter 11: Merge Replication – the Subscription

5. Similar to transactional replication, there's an overwhelming amount of connection
information needed to set up merge replication. Chapter 9 provides more details
about the inner workings of merge replication and sheds light on the various
connections. You can refer back to that chapter for more information.

6. Near the top of the Merge Agent Security dialog box, provide a Windows account for
the Merge Agent to run under. Remember, in pull subscriptions the Merge Agent runs
on the Subscriber, so this same Windows account will also be used to connect to the
SQL Server instance designated as the Subscriber.

7. In the Connect to the Publisher and Distributor section, select the option By imper-
sonating the process account. This is the default and usually the best choice. Using a
SQL Server login here is appropriate only in rare circumstances.

8. In the Connect to the Subscriber section, only the option By impersonating the
process account is available because we're setting up a pull subscription.

9. Click OK to return the New Subscription Wizard. The Merge Agent Security
page should now display account information next to your Subscriber, as shown
in Figure 11-9.

10. For now, we won't go any further with the New Subscription Wizard. But don't
close or cancel it. We'll return to it as soon as we set up the necessary permissions
on our accounts.

229

Chapter 11: Merge Replication – the Subscription

Figure 11-9: Selecting the Merge Agent security properties for a pull subscription.

Setting up permissions

The account you select to run the Merge Agent must be configured as follows:

• be a member of the db_owner fixed database role in the subscription database

• be a member of the PAL for the publication

• have read permissions to the snapshot share.

If you selected a SQL login to connect to the Publisher and Distributor during the
previous step, that login must be added to the PAL instead of the Merge Agent account.

230

Chapter 11: Merge Replication – the Subscription

Remember, to be able to add an account to the PAL, the account must be configured
as follows:

• be a login on the Publisher

• be a login on the Distributor

• have access to the publication database.

You access and configure the PAL through the publication's properties. Chapter 6
describes in more detail how to work with the PAL.

Once a login is added to the PAL, the user associated with it automatically becomes a
member of several additional database roles in the publication database. Do not manually
remove the user from those roles.

If you selected the push subscription topology, the account used to connect to the
Distributor must additionally be a member of the db_owner fixed database role in the
distribution database.

Setting up the schedule

The next step after setting up permissions is to return to the New Subscription Wizard
to define the synchronization schedule. For each Subscriber, you can schedule the
synchronization to occur continuously, on a fixed schedule, or on demand only.

By default, transactional replication is scheduled to run continuously, but this does not
make a lot of sense if the connection between the Subscriber and the Publisher cannot
be guaranteed. For a merge subscription, the default setting therefore is to start the
synchronization by manual request only (on demand). The synchronization can then be
triggered manually or by an external application, such as a virtual private network (VPN)
establishing a connection. However, if your Subscriber will be connected at fixed times,
say every day at midnight, you can also define a schedule for the synchronization.

231

Chapter 11: Merge Replication – the Subscription

For this exercise, we'll stick with on-demand synchronization. The following steps
describe how to set up your subscription's synchronization to run on demand only:

1. If you haven't already done so, advance to the Synchronization Schedule page of the
New Subscription Wizard, as shown in Figure 11-10.

Figure 11-10: Setting up the synchronization schedule.

2. Select the Run on demand only option from the Agent Schedule drop-down list
associated with your Subscriber.

3. Note that, if you want to schedule the synchronization, you should select the
Define schedule option instead. This opens a standard SQL Server Agent New Job
Schedule dialog box in which you can set up a schedule. We won't be going into this
option any further.

4. Click Next to advance to the Initialize Subscriptions page of the New Subscription
Wizard, which we cover in the next section.

232

Chapter 11: Merge Replication – the Subscription

Initializing the subscription database

After you set up your synchronization schedule, you can specify if and when the
subscription should be initialized. During the initialization step, SQL Server creates the
replicated objects in the subscription database and fills the tables with the data that is
currently on the Publisher. Similar to transactional replication, merge replication requires
in most cases that the subscription is initialized first. Check out SQL Server Books Online
for details on scenarios that allow for the initialization step to be skipped.

If you have a lot of data that needs to be replicated, the initialization will take some
time, so you should run the initialization when you can ensure that the connection
between the Subscriber, the Publisher, and the Distributor will be uninterrupted for
that entire timeframe.

The following steps describe how to initialize your subscription:

1. If you haven't already done so, advance to the Initialize Subscription page of the
New Subscription Wizard, shown in Figure 11-11.

2. For each subscription, you can choose one of the following two options:
Immediately or At first synchronization. The difference between the two is the
time at which the synchronization is executed. If you select Immediately, the
synchronization is started once you complete the New Subscription Wizard.
If you select At first synchronization, the wizard will not start the initialization.
Instead the initialization will automatically run the first time you start a manual or
scheduled synchronization.

233

Chapter 11: Merge Replication – the Subscription

Figure 11-11: Specifying when to initialize the subscriptions.

3. For this exercise, we'll synchronize our subscription immediately. In the Initialize
When column of the Subscription properties grid, select Immediately from the
drop-down list associated with your Subscriber.

4. Click Next to advance to the Subscription Type page of the New Subscription
Wizard. We cover subscription types in the next section.

234

Chapter 11: Merge Replication – the Subscription

Selecting the subscription type

The next phase of setting up your subscription is to specify the subscription type and
subscription priority. These settings are unique to merge replication and are not part of
transactional replication. Together, both settings determine if a subscription itself can act
as a publication to additional Subscribers, and the priority in which changes are applied if
there is a conflict anywhere in the hierarchy of Subscribers and Sub-subscribers.

You can set up a merge subscription to be either a client or server:

• Client: This is the default setting. A Subscriber marked as client cannot republish the
articles to additional Subscribers. All conflicts between different "clients" are handled
on a first-come-first-served basis.

• Server: Each subscription that is required to republish this publication must be set as a
server subscription. A server subscription also allows you to specify a priority
for changes.

You can assign a priority value between 0 and 99.99 to a server Subscriber. The value
determines how Subscribers are prioritized in the event of a conflict. In general, higher
values win over lower values. Note, however, that these priority-based conflict resolution
rules apply only to articles for which the default conflict resolver is selected.

The process involved in conflict resolution is much too complex to describe in a single
paragraph. In Chapter 12, we'll dig into the details on how the priorities are handled and
how client and server subscriptions interact with each other.

235

Chapter 11: Merge Replication – the Subscription

For our example, we'll set up the subscription as a client because we won't be creating a
hierarchy of Subscribers. The following steps walk you through the process of specifying
the subscription type:

1. If you haven't already done so, advance to the Subscription Type page of the New
Subscription Wizard, as shown in Figure 11-12.

Figure 11-12: Specifying the subscription type and conflict priorities.

2. Select Client from the Subscription Type drop-down list associated with your
Subscriber. Because you cannot specify a priority for a client, the Priority for Conflict
Resolution text box is read only. If you had selected Server, you would be able to
specify the priority for this subscription here.

3. Click Next to advance to the Wizard Actions page of the New Subscription Wizard.

236

Chapter 11: Merge Replication – the Subscription

Finishing up your subscription

The last three pages of the wizard should be familiar to you by now. On the Wizard
Actions page, you can select whether you want the wizard to create the subscription or
create a script that you can use later to create the subscription. For this exercise, we'll let
the wizard create the subscription, as described in the following steps:

1. If you haven't already done so, advance to the Wizard Actions page of the New
Subscription Wizard, shown in Figure 11-13.

Figure 11-13: Choosing what happens when you finish running the wizard.

2. Select the Create the subscription(s) option, and then click Next.

237

Chapter 11: Merge Replication – the Subscription

3. On the Complete the Wizard page you get a chance to review all your settings, as
shown in Figure 11-14.

Figure 11-14: Reviewing the options for creating the subscription.

4. Once you're satisfied that the settings look correct, click Finish.

5. The Creating Subscription(s) page, shown in Figure 11-15, appears and informs us of
the wizard's progress as it creates the subscription.

238

Chapter 11: Merge Replication – the Subscription

Figure 11-15: Generating the subscription.

6. If everything succeeds, click Close to close the New Subscription Wizard.

Your subscription should now be created and about ready to go. However, before you
start synchronizing your subscription, there's one more step you need to take: configuring
the subscription's retention settings.

239

Chapter 11: Merge Replication – the Subscription

Setting Up Your Subscription's Retention

The retention settings determine how long to maintain the data necessary to synchronize
a Subscriber. The settings directly affect the space required on the Publisher and the
Subscribers, as well as how long a Subscriber can be offline. You need to balance these two
sides of the medal and pick the shortest interval possible before a subscription expires
and can no longer be synchronized.

You configure retention in the publication's properties. However, because the retention
settings affect Subscribers directly, we cover them here.

The retention settings for merge replication are a lot simpler than the ones for transac-
tional replication. While transactional replication has three separate retention settings,
merge replication has only a single setting that defines how long a Subscriber can be
offline. If the Subscriber exceeds that time limit without a successful synchronization,
you have to reinitialize that Subscriber. In such cases, changes that happened on the
Subscriber since the last synchronization will be lost. In addition, if the Subscriber has
not been reinitialized within a timeframe of twice the retention period, the subscription
is dropped completely.

For example, the default retention period for merge replication is 14 days. That means,
by default, the Subscriber will be disabled if it has not been synchronized within 14 days.
Then, if the Subscriber is not reinitialized within the 14 days after that, the subscription
is removed completely from the Publisher. In the case of a push subscription, its
Merge Agent is automatically removed too. In either case, the data in the tables on the
Subscriber remains unchanged.

For a Subscriber that is republishing, you can select a different retention setting, as long
as it is smaller than the retention setting on its Publisher. However, it is strongly recom-
mended that you use the same retention setting on all republishing Subscribers in a single
merge replication hierarchy.

240

Chapter 11: Merge Replication – the Subscription

The following steps describe how to set up the retention period on your subscription:

1. In SSMS, connect to the SQL Server instance that you've set up as your Publisher.

2. In Object Explorer, expand the Replication folder for that instance and then expand
the Local Publications subfolder.

3. Right-click your publication and select Properties. This launches the Publication
Properties dialog box. The dialog box opens to the General page, as shown in Figure
11-16. The page contains the Subscription expiration section, which is where you can
select the length of the retention period. You can also select a unit of time, such as
minutes, hours, or days. The default is 14 days.

4. For this exercise, we'll stick with the default setting, so click Cancel to close the
Publication Properties dialog box.

Figure 11-16: The publication's subscription expiration setting.

241

Chapter 11: Merge Replication – the Subscription

Synchronizing Your Subscription Manually

During the subscription setup process, we selected the Run on demand only option on
the Synchronization Schedule page of the New Subscription Wizard. One way we can
run an on-demand synchronization is to execute a manual synchronization from SSMS.
This section describes how to do that.

Manual synchronization is an easy way to synchronize a single Subscriber with its
Publisher. However, if there are multiple Subscribers or even multiple levels of repub-
lishing Subscribers in your topology, manual synchronization becomes very cumbersome.
For example, to get changes from Subscriber A to Subscriber B on the same Publisher,
you have to first synchronize Subscriber A with the Publisher and then Subscriber B
with the Publisher. After that, you have to synchronize Subscriber A with the Publisher
again to pick up the changes that happened on Subscriber B. In a multi-level hierarchy,
this process very quickly becomes complex. That's why it's recommended to use manual
synchronization only for the simplest replication setups.

However, even if you have synchronization scheduled or otherwise automated, you can
still execute an additional manual synchronization at any time. This can be helpful, for
example, if you have a synchronization scheduled nightly, but your Subscriber was not
connected at the scheduled time. The next time it's connected, you can simply execute a
manual synchronization to get the latest data.

Follow these steps to start the synchronization of a single subscription:

1. In SSMS, connect to the SQL Server instance that you've set up as the Subscriber.

2. In Object Explorer, expand the Replication folder for that instance, and then
expand the Local Subscriptions subfolder. Right-click the subscription you want to
synchronize and click View Synchronization Status, as shown in Figure 11-17.

242

Chapter 11: Merge Replication – the Subscription

Figure 11-17: Accessing the Synchronization Status dialog box.

3. When you click the View Synchronization Status option, the View
Synchronization Status dialog box appears. The dialog box should appear
similar to the one in Figure 11-18, except that it will show the SQL Server
instances and databases you've configured in your own replication setup.

243

Chapter 11: Merge Replication – the Subscription

Figure 11-18: Launching the View Synchronization Status dialog box.

The View Synchronization Status dialog box includes several options related to
synchronizations:

• Start: run the Merge Agent job that performs the synchronization.

• Stop: stop a Merge Agent job that's currently synchronizing a subscription.

• View Job History: view the history of the most recent Merge Agent job executions.

• Close: close the View Synchronization Status dialog box.

4. Click Start to execute the synchronization of your subscription. The dialog box will
show progress information.

5. You can click Close at any time to close the dialog box. You don't have to wait for the
synchronization to finish, as it will continue in the background.

244

Chapter 11: Merge Replication – the Subscription

Summary

In this chapter, you learned how to set up a subscription on a merge replication
Subscriber. First, you connected to the Publisher and selected the publication that the
subscription would connect to. Next, you selected the Merge Agent location and specified
the subscription database. You then configured the Merge Agent security. Finally, you
learned how to set up the synchronization schedule, initialize the subscription database,
and select the subscription type.

The chapter also included information about push and pull subscriptions. Plus, you
learned how to configure your subscription's retention and how to synchronize the
subscription manually.

If you followed the steps in this chapter's exercises, you should have a working merge
replication setup. You can test that setup by changing data on the Publisher as well as
the Subscriber and see how those changes are replicated with each synchronization.
Keep in mind that you need to synchronize manually before you can see the data
changes on the other side of your replication setup because we did not create a
schedule on the Synchronization Schedule page.

In Chapter 12 you'll be introduced to conflict resolvers and you'll learn how they
automatically handle conflicts in merge replication.

245

Chapter 12: Merge Replication –
Conflicts

Merge replication allows data changes to be synchronized between the Publisher and
one or more Subscribers. If a row in a published table at a Subscriber changes, the change
will be replicated to the Publisher during the next synchronization with that Subscriber.
From there, the change will be propagated to the other Subscribers during their next
synchronizations.

Such a system opens up the possibility for conflicts. For example, suppose someone
changes a customer's phone number on Subscriber A, and then someone else changes
the same phone number on Subscriber B, but to a value different from the one on
Subscriber A. If Subscriber A is synchronized before Subscriber B, the Publisher will
accept the change from Subscriber A. Afterwards, when Subscriber B is synchronized,
the Publisher will detect a conflict.

This chapter introduces the conflict resolvers that are used to automatically handle
conflicting updates in replication. First, we define in detail what types of updates are
considered a conflict. Afterwards, we look at how to select a conflict resolver and how
that choice affects our data. We also cover some of the resolvers that come pre-installed
with SQL Server, such as the default resolver and the interactive resolver. In addition,
the chapter covers ways in which you can develop your own resolvers. The chapter
closes with a section on how to review, or even change, the outcome of an automatic
conflict resolution.

246

Chapter 12: Merge Replication – Conflicts

Conflict Types

The most common cause for a conflict is that a row is changed on one node (Publisher
or Subscriber) and then changed on another node, as in the example above. This type of
conflict is called an update-update conflict.

However, if a row is updated on one node, but deleted on another node, the resulting
conflict is called an update-delete conflict.

A conflict can also occur if a change that is applied to one node cannot be applied to
another node. For example, a successful update on one Subscriber might result in a
constraint violation on another Subscriber. This type of conflict is called a failed-change
conflict.

Failed-change conflicts can occur due to a number of reasons, such as mismatched
constraint definitions or mismatched triggers or identity columns being used without
automated identity management. For a complete list of reasons why failed-change
conflicts can occur, refer to SQL Server Books Online.

Now let's look at how to configure merge replication to handle various types of conflicts.

Configuring the Tracking Level

When setting up merge replication, you can choose between two tracking options that
determine how the Merge Agent compares concurrent changes in order to identify
conflicts:

• row-level tracking

• column-level tracking.

247

Chapter 12: Merge Replication – Conflicts

The two options are available through the Tracking level property associated with each
table article. You can access the property through the Article Properties dialog box for
that article, as shown in Figure 12-1.

Figure 12-1: Selecting a value for the Tracking level property.

248

Chapter 12: Merge Replication – Conflicts

While creating the publication, you can access the Article Properties dialog box from
the Articles page of the New Publication Wizard. This is the same dialog we used in
Chapter 10 to change the Synchronization direction setting.

The following steps describe how to change the property or check its current value in an
existing publication:

1. In SQL Server Management Studio (SSMS), connect to the Publisher in
Object Explorer.

2. Expand the Replication folder and its Local Publications subfolder.

3. Right-click your publication and select Properties.

4. When the Publication Properties dialog box appears, go to the Articles page.

5. From the list of articles, select the table article you want to change, and then click the
Article Properties button.

6. When a drop-down list appears, select Set Properties of Highlighted Table Article.
This opens the Article Properties dialog box shown in Figure 12-1. Here you can view
the current setting for the tracking-level property or change its value.

7. Click OK twice to close both dialog boxes.

Now that you know how to access the tracking level property, let's take a closer look at
the differences between row-level and column-level tracking.

Row-level tracking

By default, merge replication uses row-level tracking because it requires the least amount
of resources. If a row gets updated, the merge triggers record the value from the row's
UNIQUEIDENTIFIER column. The UNIQUEIDENTIFIER column identifies a row across
the Publisher and all Subscribers, even if all other column values have changed.

249

Chapter 12: Merge Replication – Conflicts

During the synchronization of two nodes, the Merge Agent checks if the same row has
been changed on both sides. If that has occurred, the Merge Agent records that the row
has a conflict and resolves the conflict according to the conflict resolution rules that were
set for the article. How to influence those rules and how to review conflicts are described
in the Conflict Resolvers and Reviewing Conflicts sections, below.

Row-level tracking requires only the UNIQUEIDENTIFIER value for each changed
row to be stored in the change log. Therefore, row-level tracking uses only a minimal
amount of storage space. However, this process potentially marks non-conflicting
changes as conflicts. For example, assume Person A updates a customer's phone number
on the Publisher and Person B updates the email address of that same customer on the
Subscriber. Those two changes are not in conflict with each other. However, if both
values are stored in the same row of the Customer table, row-level tracking will mark
those changes as a conflict because both changes affected the same row.

Column-level tracking

Column-level tracking does not consider changes to two different columns in the same
row as a conflict. However, to be able to make the distinction, this form of tracking
requires more resources. In addition to recording the UNIQUEIDENTIFIER value for each
changed row, column-level tracking also tracks the specific columns that have changed.

Consider again the scenario described above, in which one person updates the customer's
phone number and another person updates that customer's email address. Because
column-level tracking tracks the column information, the Merge Agent can correctly
identify this situation as a non-conflict.

Only if the same column in the same row changes at different sites, does the Merge Agent
record a conflict and handle it according to the conflict resolution rules.

250

Chapter 12: Merge Replication – Conflicts

Conflict Resolvers

When a conflict is detected, the Merge Agent employs a conflict resolver to determine
which version of the changes is kept. You can think of a conflict resolver as a Merge Agent
plug-in whose specific purpose is to deal with conflicts.

When setting up merge replication, you can choose which conflict resolver is used on
a per article basis. Chapter 10 briefly describes how to select a resolver in the Article
Properties dialog box, which you can open from within the New Publication Wizard. As
you saw in the previous section, you can also open the dialog box from within SSMS for
an existing publication. Figure 12-2 shows the dialog box, opened to the Resolver tab.

Figure 12-2: Selecting a conflict resolver.

251

Chapter 12: Merge Replication – Conflicts

In the Article Properties dialog box, you can choose to use either the default resolver or
any other resolver that has been registered with the Distributor. Figure 12-2 shows all the
conflict resolvers that come pre-installed with SQL Server.

A resolver decides which version of the conflicting data wins; that is, which version of
the changes will be used on both nodes. For example, the resolver selected in Figure 12-2,
Maximum Conflict Resolver, bases its decision on the value of a single column. You
can specify which column it uses by providing a column name in the Enter information
needed by the resolver text box under the list of resolvers.

In a conflict situation, the side that has the larger value in this column wins the conflict.
This can be useful in a situation where updates can have different priorities. Suppose
that Person A updates the phone number of a customer on one subscriber. Because
the phone number is rarely used to contact customers, Person A sets the value in the
update_priority column of that same row to 1. At the same time Person B changes
the email of the same customer. Email is the main communication channel for the
company, so Person B marks this change as important by setting the value in the priority
column to 3. If merge replication is set up to resolve conflicts based on the value in the
update_priority column and also set up to use the Maximum Conflict Resolver,
the change to the email will win this conflict situation, while the change to the phone
number will be lost. The phone number change however will be copied into a conflict
table so you can review it at a later time. (In the Reviewing Conflicts section, below, we
discuss the conflict table in more detail.)

The resolver that is selected by default is aptly named the default resolver. It follows a fairly
complex set of rules that are described in the following section.

252

Chapter 12: Merge Replication – Conflicts

The default resolver

Chapter 11 briefly mentions a subscription's priority and subscription type. The default
resolver uses the priority in conjunction with the subscription type to decide which
version of the data survives a conflict. You can designate each subscription as either
a client type or a server type. For a server type subscription, you can pick a priority
value between 0 and 99.99. (Note that the subscription's priority is not the value in the
update_priority column from the previous example, but rather a setting for the entire
subscription. Refer back to Chapter 11 for details on how to set this value.)

The first publication always has a priority of 100. A client type subscription does not
have a priority itself. Instead, all changes made at a Subscriber with a client type
subscription assume the priority of the publication at the time of synchronization.
All changes originating from a Subscriber with a server type subscription assume the
priority of that subscription. Also keep in mind that on a Subscriber you can create a
publication that republishes articles of a subscription only if these articles were created
by a server type subscription.

Once a change has been synchronized the first time and therefore has a priority assigned
to it, that priority does not change again throughout subsequent synchronizations.

Let's look at an example, to better understand how this works. Figure 12-3 contains eight
nodes in a merge replication hierarchy. Node A is the Publisher that contains the main
publication. It has a priority of 100. Node C is a Subscriber with a server type subscription
subscribing to Node A. That subscription has a priority of 50. Node C republishes to three
of its own Subscribers. Node B and Node H are Subscribers that each have a client type
subscription. Remember, client type subscriptions don't have their own priority value. All
other nodes are Subscribers that each have a server type subscription. Those subscriptions
each have their own priority, as shown in Figure 12-3.

253

Chapter 12: Merge Replication – Conflicts

Figure 12-3: Example of a merge replication setup.

In a topology like this, you have to run several synchronization steps to get every change
to every node. For example, suppose a user modifies data on Node F. To distribute this
change, Node F must first sync with Node C. Then Node C must sync with Nodes A, G
and H. Finally Node A must sync to Nodes B, D and E.

If at that time a conflict is detected between a change at Node D and the original change
at Node F, D's change will win because of the higher priority. As a result, Node A now
must sync again with B, C and E. After that, C must sync with all of its Subscribers. In this
scenario, five synchronization steps are required to fully synchronize this change. Keep
this in mind when you design a complicated layout of merge replication participants. The
greater the number of nodes involved, the more steps it takes to fully synchronize each one.

254

Chapter 12: Merge Replication – Conflicts

For the rest of this section, we'll use the term full synchronization to mean a complete
synchronization that includes all the steps necessary to get all nodes in sync.

Table 12-1 shows which change survives a full synchronization if conflicting changes
occur on two nodes. The information in the table assumes that all articles use the default
resolver and both changes occur before the first synchronization step.

Nodes with conflicting change Result of a full synchronization

A Any other node A wins

B D The first node that synchronizes with A wins

D E D wins

D G G wins

F E E wins

H E The first node that synchronizes with C wins

H B The first node that synchronizes with A wins

Table 12-1: Synchronization priorities for the topology shown in Figure 12-3.

In short, the default resolver in merge replication adheres to the following
synchronization rules:

• A change on the main Publisher always wins any conflict.

• A change on a node with a client type subscription loses if a conflicting change
occurred on its direct Publisher before the synchronization. It's immaterial
whether the conflicting change to the Publisher was applied directly or through
synchronization with another node.

255

Chapter 12: Merge Replication – Conflicts

• A change on a node with a client type subscription that was successfully synchronized
with its direct Publisher without a conflict will, at successive synchronization steps, be
treated exactly as if the change had originated at that Publisher.

• If two conflicting changes originate at two nodes with server type subscriptions, the
change applied to the node with the higher priority wins, independent of the type,
number, and priority of nodes between them, and independent of the order of the
synchronization steps.

Other resolvers

Several predefined resolvers are installed when you set up SQL Server, as you have
seen in Figure 12-2. They range from date-dependent resolvers, to resolvers that use
the maximum or minimum value of the conflicting values, to those that build an
average of the conflicting values. See SQL Server Books Online for details on how
to use these resolvers.

There is also one special type of resolver in this list, the Stored Procedure Resolver. It
allows you to supply a stored procedure that contains the necessary logic to determine
which version wins. This is probably the easiest way to implement a customized resolver.
For details on how to implement this type of resolver, I again have to refer you to
SQL Server Books Online.

Custom resolvers

Above, I mentioned that resolvers can be thought of as plug-ins. The plug-in interface for
resolvers is actually published, so you can write your own conflict resolvers using C++.
This way, you can really customize how merge replication conflicts should be treated.

256

Chapter 12: Merge Replication – Conflicts

After creating your own custom resolver, you must register it with the Distributor
before it can be used. For details on how to create a custom resolver that uses the plug-in
interface and how to register the resolver with a Distributor, check out SQL Server
Books Online.

Business logic handlers

Another way to influence the outcome of conflicts is to use business logic handlers
(BLHs), which are assemblies written in managed code using the Common Language
Runtime (CLR). You install BLHs the same way you install custom resolvers. However,
BLHs are a lot more flexible. They can be executed at the Subscriber or at the Distributor
and can respond to a long list of events, including data changes with no conflict. A BLH
that tracks updates is executed for every row that's updated. During its execution, a BLH
can reject changes, resolve conflicts, and even modify values. You can find more details
about BLHs in SQL Server Books Online.

Interactive conflict resolution

Another way to resolve conflicts is to use the Windows Synchronization Manager to
resolve them interactively. Getting Windows Synchronization Manager to work with SQL
Server merge subscriptions is beyond the scope of this book. However, you should keep in
mind several important points:

• you must run the Windows Synchronization Manager on the Subscriber

• the subscription must be a pull subscription

• you must configure a series of properties on the subscription as well as on
the publication.

257

Chapter 12: Merge Replication – Conflicts

The Windows Synchronization Manager is not part of SQL Server; instead it comes
pre-installed on Windows desktop operating systems and can be installed on server
operating systems. For details on how to make all this work, check out your Windows
documentation and SQL Server Books Online.

Reviewing Conflicts

The Merge Agent records all automatically resolved conflicts. You can review them later
and even change their outcome. The following steps describe how to review automati-
cally resolved conflicts:

1. First, we need a conflict to work with. Execute an update statement against the
same two rows in both the subscription and the publication databases. If you
used the examples provided when setting up merge replication, you can use the
following statement:

UPDATE dbo.Tbl1 SET Data2 = CHECKSUM(NEWID()) WHERE Id IN (13,42);

2. After executing the update in both databases, connect to the Subscriber in Object
Explorer and expand the Replication folder and its Local Subscriptions subfolder.
Right-click your subscription and then click View Subscription Status, as shown in
Figure 12-4.

258

Chapter 12: Merge Replication – Conflicts

Figure 12-4: Accessing the Synchronization Status dialog box.

3. In the Synchronization Status dialog box, click Start to synchronize the tables. This
should result in two conflicts, as shown in Figure 12-5.

259

Chapter 12: Merge Replication – Conflicts

Figure 12-5: Synchronization resulting in conflicts.

4. Click Close to dismiss the Synchronization Status dialog box.

5. In SSMS, open a new query window connected to the publication database and run
the following query:

SELECT * FROM dbo.Tbl1 WHERE Id IN (13,42);

Leave the query results open for later review.

6. Use Object Explorer to connect to the Publisher, expand the Replication folder, and
the Local Publications subfolder.

7. Right-click the publication and then click View Conflicts, as shown in Figure 12-6.

260

Chapter 12: Merge Replication – Conflicts

Figure 12-6: Viewing conflicts recorded on the Publisher.

8. When the Select Conflict Table dialog box appears, you can select the table for
which you want to review the conflicts. Only tables that encountered conflicts are
shown, together with the number of conflicts for each of them. Because we created
our two conflicts in a single table, the dialog box will list only that table, as shown in
Figure 12-7.

261

Chapter 12: Merge Replication – Conflicts

Figure 12-7: Selecting a table with conflicts.

9. Select Tbl1 and click OK. This opens the Replication Conflict Viewer dialog box,
shown in Figure 12-8.

The Replication Conflict Viewer dialog box is split into an upper pane and lower
pane. The upper pane contains the list of all conflicts that occurred on the selected
table. The list specifies the conflict loser, the type of conflict, and when the conflict was
detected. When you select one of the conflicts in this list, the bottom pane shows details
about the column values of the conflicting rows. It includes the values of the winner as
well as the loser.

262

Chapter 12: Merge Replication – Conflicts

Figure 12-8: Viewing conflicts in the Conflict Viewer.

10. Select the conflict whose Id value equals 42 (probably be the second conflict listed
in the upper pane), and then click the Remove button. This will remove the conflict
from the list. Removing an entry like this will not change any data in the replicated
tables. It just tells SQL Server that you accept the change.

11. In the upper pane, select the remaining conflict, the one whose Id value equals 13,
and then click the Submit Loser button at the bottom of the dialog box. This will tell
SQL Server that you do not accept the automatic conflict resolution and that you're
submitting the prior loser of the conflict as new winner.

Submitting a new winner for a conflict will remove the entry from the conflict list and
will update the Publisher to reflect the new values. From there, the changes will be
distributed to the other nodes during their next synchronization.

263

Chapter 12: Merge Replication – Conflicts

12. Close the Replication Conflict Viewer dialog box.

13. Run the SELECT statement in Step 5 again, but in a new query window, also
connected to the publication database. Compare the result to the results you received
in Step 5. For Row 42, they should match. However for Row 13, you should see that
the value in the Data2 column changed because we changed the outcome of that
particular conflict.

At this point, you can close the query windows in Management Studio or even close
Management Studio itself if you're finished with merge replication for now.

Summary

This chapter explained how merge replication handles synchronization conflicts.
We talked about the different types of conflicts and conflict resolvers. We also
discussed different options for providing your own logic for conflict resolution.
In addition, we provided an in-depth look at how the default resolver works in a
multi-tiered merge replication setup. Finally, we examined the capabilities of the
merge replication conflict viewer.

This closes out the part of the book about merge replication. In the next two chapters,
we will look at the Replication Monitor and learn a few ways to troubleshoot replication.

264

Chapter 13: Replication Monitor

Replication Monitor is a tool that lets you see the health of the components in a
replication setup in one convenient place. The tool provides information on several
levels so you can quickly see whether your Publishers and Subscribers are working as
they should. If there are problems, you can use Replication Monitor to drill down
through the Publisher, its publications, and their subscriptions to determine where the
problems lie.

In this chapter, we'll walk you through the process of accessing Replication Monitor and
viewing information about various replication components. The chapter assumes that
you have followed the exercises in the earlier chapters and have set up both transactional
and merge publications. We'll be using those publications to demonstrate how to use
Replication Monitor.

Starting Replication Monitor

Replication Monitor is not part of SQL Server Management Studio; it is a separate
executable named SqlMonitor.exe. However, in a standard SQL Server installation,
you will not find Replication Monitor listed in the Start menu. The easiest way to
launch Replication Monitor is from SQL Server Management Studio, as described in the
following steps:

1. In SSMS, connect to the SQL Server instance you've set up as your Publisher.

2. In Object Explorer, navigate to the Replication folder for that instance, right-click
the folder, and then click Launch Replication Monitor, as shown in Figure 13-1.

265

Chapter 13: Replication Monitor

Figure 13-1: Launching Replication Monitor.

When Replication Monitor opens, you'll see that the main screen is divided into two
windows, as shown in Figure 13-2. The left window provides a hierarchical view of the
publications associated with each Publisher currently being monitored. By default, the
only Publisher listed is the one from which you launched Replication Monitor. On my
system, that Publisher instance is SQL2\S12A.

266

Chapter 13: Replication Monitor

Figure 13-2: Viewing Publisher information in Replication Monitor.

The information in the right-hand window shows details about the item selected in
the left-hand window. For example, in Figure 13-2, because the Publisher is selected, the
right-hand window shows details about the publications associated with that Publisher.

3. Click the My Publishers node or the Replication Monitor node in the left-hand
window. The right-hand pane will display links to additional information about
monitoring replication. You'll also find a link for adding a Publisher to Replication
Monitor.

You do not need to take any other steps for this exercise. Leave Replication Monitor open,
because we will start from here in the next exercise.

267

Chapter 13: Replication Monitor

Removing a Publisher

In the left window of Replication Monitor, you can remove individual Publishers from
the list. This does not change any data on the Publisher itself; it just stops showing infor-
mation about this Publisher in Replication Monitor. You probably won't have to remove a
Publisher very often, but I've included it here to demonstrate how it works and to set the
stage for the next exercise. The following steps describe how to remove a Publisher from
Replication Monitor:

1. Right-click the Publisher you want to remove, and then click Remove, as shown in
Figure 13-3.

 Figure 13-3: Removing a Publisher from Replication Monitor.

2. Click Yes when prompted to confirm whether you want to remove the
selected Publisher.

268

Chapter 13: Replication Monitor

3. Repeat the same steps for the My Publishers node. This is possible only if there are
no more Publishers listed under this node. Note that the node is referred to as a
group and is used to organize your Publishers. In the next exercise, you'll learn how to
create a group.

4. After removing the Publisher and the My Publishers node, the Replication Monitor
window will just show the Replication Monitor node on the left-hand window, and
the information on the right-hand window, as shown in Figure 13-4.

 Figure 13-4: Replication Monitor without connected Publishers.

5. Leave the window open for the next exercise.

269

Chapter 13: Replication Monitor

Connecting to a Publisher

If you started Replication Monitor by using the context menu of a Publisher in SSMS,
the Publisher is listed automatically. However, you can connect to additional Publishers
within Replication Monitor or reconnect to one that you removed before. In this exercise,
we'll add back to the list the Publisher we deleted in the previous exercise, as described in
the following steps:

1. In Replication Monitor's left-hand window, right-click the Replication Monitor node,
and then click Add Publisher, as shown in Figure 13-5.

Figure 13-5: Adding a Publisher to Replication Monitor.

2. When the Add Publisher dialog box appears, click the Add button, and then
click Add SQL Server Publisher, as shown in Figure 13-6.

270

Chapter 13: Replication Monitor

 Figure 13-6: Using the Add Publisher dialog box to add a Publisher.

3. When the Connect to Server dialog box appears, provide the necessary connection
information. On my system, I'm connecting to the instance SQL2\S12A, as shown in
Figure 13-7. Once you've entered the necessary information, click Connect.

271

Chapter 13: Replication Monitor

 Figure 13-7: Connecting to a Publisher.

4. If the connection is successful, a message box appears, similar to the one shown in
Figure 13-8. It lets us know that, in order to monitor a Publisher, Replication Monitor
needs to connect, not only to that Publisher, but also to the Distributor.

Figure 13-8: A connection to a Publisher also requires a connection to the Distributor.

5. When you click OK to close the message box, another Connect to Server dialog
box appears, with your publication's Distributor preselected. Provide the necessary
credentials and click Connect.

6. You will be returned to the Add Publisher dialog box. It should now list your
Publisher and Distributor in the Start monitoring the following Publisher(s) section.
You can connect to additional Publishers by clicking the Add button and repeating
the steps above.

272

Chapter 13: Replication Monitor

7. Next, you must provide a group under which the Publisher will be listed in Repli-
cation Monitor. The bottom half of the Add Publisher dialog box lists all groups that
are currently defined. Because we removed the only group in the previous exercise,
this list is empty. Click New Group to create a one. This launches the New Group
dialog box, as shown in Figure 13-9.

Figure 13-9: Creating a new Publishers group.

8. Type My Publications in the Group Name text box, and then click OK. This will add
the new group to the list of groups and automatically select it. If you have multiple
groups listed here, make sure the new one is selected.

9. The last thing you need to set is the refresh interval. It determines how often infor-
mation about the Publisher is collected from the Publisher as well as the Distributor.
The default value of 10 seconds is usually a good choice, so we'll leave that value
unchanged. Your Add Publisher dialog should now look similar to the one shown in
Figure 13-10.

273

Chapter 13: Replication Monitor

 Figure 13-10: Adding a Publisher to Replication Monitor.

10. Click OK again to close the Add Publisher dialog box. Replication Monitor's left-hand
window should again list the Publisher, as shown in Figure 13-11.

274

Chapter 13: Replication Monitor

 Figure 13-11: The newly added Publisher.

Note that you cannot create a group inside of another group, nor can you create more
than one connection to a Publisher at a time. That means each Publisher can be in only
a single group at any given time. If you try to connect to a publisher a second time,
Replication Monitor will display a friendly message box telling you it won't tolerate
such an attempt.

11. Leave Replication Monitor open for the remainder of the chapter.

275

Chapter 13: Replication Monitor

Viewing Information About a Publisher, Its
Publications and Subscriptions

Throughout the rest of the chapter, we focus on where to find information about specific
components in your replication setup. Although Replication Monitor is well structured,
information is not always easy to find.

To help demonstrate where to find what, we start with the information available about
your Publishers. From there, we go to the information available for each publication.
After covering the differences in this information between transactional and merge
replication, we look at where to find information about each subscription. We then
follow this with a discussion on how to set up alerts to notify you about problems in
your replication setup.

Although we try to cover many of the features in Replication Monitor, the most we can
hope to provide is an overview of the variety of information and functionality available
in Replication Monitor. Describing everything in detail would fill an entire book. For that
reason, the rest of this chapter does not follow the step-by-step approach we've used up
to this point. Instead, we present the information in a way that will help you know where
to look when you need to find specific information.

Viewing information about a Publisher

In Replication Monitor, when you select a Publisher in the list on the left, the right-hand
window displays details about that Publisher. The information is displayed in what I
refer to as the Publisher module, which is separated into three tabs: Publications,
Subscription Watch List, and Agents. Figure 13-12 shows the Publications tab for the
Publisher SQL2\S12A.

276

Chapter 13: Replication Monitor

 Figure 13-12: Viewing the Publishers and publications in Replication Monitor.

The Publications tab displays information about all publications defined on the selected
Publisher. The information is divided into the following columns:

• Status: This column gives information about the general health of this publication and
its subscriptions. There are four possible values:

• Error

• Performance Critical

• Retrying failed command

• OK.

277

Chapter 13: Replication Monitor

• Publication: The names of the publication and database it's defined in, in this
format: [Database Name]: Publication Name.

• Subscriptions: This column lists the number of Subscribers for each publication.

• Synchronizing: This is the number of subscriptions that are currently actively
synchronizing. This value is only meaningful for merge and snapshot replication.

• Current Average Performance and Current Worst Performance: These columns
display information about the current performance of all subscriptions combined.
Possible values are:

• Excellent

• Good

• Fair

• Poor

• Critical.

The performance measurement for the last two columns is based on the performance of
all subscribers. Performance for transactional subscriptions is measured only if the perfor-
mance thresholds have been enabled in the Warnings tab (described in the next section).
Merge publication performance is displayed only after at least five synchronizations.

The second tab of the Publisher module is the Subscriptions Watch List tab, shown in
Figure 13-13. The tab displays a list of subscriptions associated with the selected Publisher,
based on subscription type.

278

Chapter 13: Replication Monitor

 Figure 13-13: Viewing subscriptions on the Subscription Watch List tab.

You select the subscription type from the drop-down list near the top-left corner of the
Subscription Watch List tab. You can view information about transactional, merge, or
snapshot subscriptions. The list of columns is different for each type. (The sections that
follow provide more details about what information is displayed.)

The drop-down list near the top-right corner of the tab allows you to filter your list of
subscriptions based on problem areas. Figure 13-14 shows the list of available options in
the drop-down list.

279

Chapter 13: Replication Monitor

 Figure 13-14: Filtering the list of subscriptions based on a problem area.

If you select one of these filters, only subscriptions that match the filter are included in
the list. This can be a great help if you are dealing with a lot of subscriptions.

The third tab of the Publisher module, Agents, displays information about the replication
agents, as shown in Figure 13-15.

280

Chapter 13: Replication Monitor

 Figure 13-15: Viewing information about the replication agents.

In the Agent types drop-down list, you can select which types of agents you want to
display. The available types include the following:

• Snapshot Agent

• Log Reader Agent

• Queue Reader Agent

• Maintenance Jobs.

In reality, the last entry in this list is not an agent. Instead, it covers all the additional
maintenance jobs that are created by replication.

281

Chapter 13: Replication Monitor

After you make a selection, the window will show all agents (or jobs) of the selected
type across all publications on this Publisher. The information displayed for each is
dependent on its type. However, for each of them there is a lot of information available.
Especially for the log reader agents there is more information displayed here than
anywhere else in Replication Monitor, so this should be the first place to check if you
think you are having a problem with the log reader.

For all agent types, you will find at least information about the current status, the last
start time, the duration, and the last action performed. In addition, for all selections of
the Agent types drop-down list, with the exception of Maintenance Jobs, the tab also
displays performance information for the most recent run, as well as counts for trans-
actions and commands processed during the most recent run.

The Agent types drop-down list contains neither the Distribution Agent nor the
Merge Agent. Those are subscription-specific agents and are therefore not included
in the Publication's Agents tab.

Viewing information about transactional
publications

If you select a transactional publication in Replication Monitor's left-hand window, the
right-hand window displays information about that publication. This publication module
includes four tabs. The first is the All Subscriptions tab. It shows a list of all subscriptions
associated with the selected publication. For each subscription, you can find information
about its status and performance. Figure 13-16 shows this All Subscriptions tab for the
MyFirstPublication publication, which includes only one subscription.

282

Chapter 13: Replication Monitor

Figure 13-16: The subscription associated with a transactional publication.

The Status column indicates the health of the Distribution Agent for this subscription.
The column supports the following values:

• Error

• Retrying failed command

• Not Running

• Running.

283

Chapter 13: Replication Monitor

There are also three possible warnings that can be included in addition to the status:

• Performance critical

• Expiring soon / Expired

• Uninitialized subscription.

For example, you might see a status of Running, Performance critical.

The Performance column provides a rough overview of the speed of the Subscriber. You
can find the same values here that are used for the Publisher performance. The Latency
column specifies the time that it takes for a change to replicate from the Publisher to this
Subscriber.

The second tab of the publication module is the Tracer Tokens tab. It displays latency
measurements from the Publisher to the Distributor, the Distributor to the Subscriber,
and the total latency, as shown in Figure 13-17.

Figure 13-17: Latency measurements on the Tracer Tokens tab.

284

Chapter 13: Replication Monitor

A tracer token is a special mark that gets inserted into the log file of the publication
database. A tracer token does not change the data in the replicated tables on the Publisher
or any Subscriber. However, to the replication agents, this mark looks like a normal
transaction. That means it moves through all the standard replication steps, allowing
SQL Server to measure the latency between Publisher and Distributor as well as between
the Distributor and each Subscriber. You can insert a new tracer token into the log by
pressing the Insert Tracer button on the Tracer Tokens tab.

The Tracer Tokens grid displays a single row per Subscriber. You can retrieve previous
latency measurements by selecting the date and time from the Time inserted drop-down
list. The date and time in this list represent when the token was inserted into the log.

The next tab in the publication module is the Agents tab. It displays information about
the SQL Server Agent jobs that run the Snapshot Agent and the Log Reader Agent, as
shown in Figure 13-18.

Figure 13-18: The transactional replication agents associated with a publication.

285

Chapter 13: Replication Monitor

The information includes the job status, the last start time, and the duration of the last
execution (which can still be running). The Agents tab also displays information about
the last action that was taken by each agent.

Information about the Distribution Agents is not included in this tab. Later in the
chapter, you'll see where to find this information.

The last tab of the publication module is the Warnings tab, shown in Figure 13-19. The
tab lets you enable warnings and configure their thresholds.

Figure 13-19: Warning messages related to transactional replication.

For transactional replication, you can specify the thresholds for two warnings. The first is
an expiration warning. If more than the specified percentage of the maximum retention
time has passed for a Subscriber, this warning will be displayed for that Subscriber. (See
Chapter 7 for information about maximum retention times.)

286

Chapter 13: Replication Monitor

The second threshold is related to a latency warning. You'll receive a warning when the
latency exceeds the specified time limit (in seconds, minutes, or hours). You can disable
either warning by deselecting the Enabled check box associated with the specific warning.

The actual warnings are displayed in the Status column on the All Subscriptions tab. A
yellow triangle is also tagged onto each level of the Publisher hierarchy in the left-hand
window. Figure 13-20 provides an example of what the warning tags look like.

Figure 13-20: Warning tags associated with a subscription.

287

Chapter 13: Replication Monitor

Viewing information about merge publications

If you select a merge publication in Replication Monitor's left-hand window, the right-
hand window displays information about that publication, similar to what you saw with
transactional publications. However the publication module displayed for merge publica-
tions includes only three tabs. (There's no Tracer Tokens tab because merge replication
doesn't use the transaction log and therefore cannot accommodate tracer tokens.)

The first of the three tabs, All Subscriptions, shows a list of subscriptions associated
with the selected publication. For each subscription, you can see information
about its status and performance. Figure 13-21 shows the All Subscriptions tab
for MyFirstMergePublication, the publication we created in Chapter 10.

Figure 13-21: Viewing the subscriptions associated with a merge publication.

288

Chapter 13: Replication Monitor

The All Subscriptions tab contains a row for each subscription associated with the
selected merge publication. For each row, you can see the current status, connection type,
time and duration of the last synchronization, performance-related information, and the
delivery rate.

The Status column can contain any of the following values:

• Error

• Retrying failed command

• Not synchronizing

• Synchronizing.

There are also four possible warnings that can be included in addition to the status:

• Performance critical

• Long-running merge

• Expiring soon / Expired

• Uninitialized subscription.

For example, you might see a status of Synchronizing, Performance critical.

The Performance column can contain any of the following four values:

• Excellent

• Good

• Fair

• Poor.

There are some additional columns shown in Figure 13-21. They are mostly self-
explanatory. Check out SQL Server Books Online for more details about those columns.

289

Chapter 13: Replication Monitor

The second tab of the publication module associated with merge publications is
the Agents tab. It's similar to the one used for transactional publications (shown in
Figure 13-18), except that, for merge publications, it displays information only about
the Snapshot Agent.

The third tab, Warnings, lets you configure warning thresholds, as shown in Figure 13-22.

 Figure 13-22: Warning messages related to a merge publication.

The Warnings tab includes five warnings that you can enable and configure for merge
replication. The first warning is displayed when a subscription is about to expire. The
second and third warnings are displayed when a length of a single synchronization
exceeds this threshold. The first of these is specific to dialup connections, and the second
is specific to LAN connections; only one of the two is active for any given synchroni-
zation, based on the current connection type. The last two warnings are displayed when
the rate of rows merged per second drops below the threshold set here. In this case, the
first of these is specific to LAN connections, and the second to dialup connections.

The warnings themselves are displayed in the same way as they are for transactional
subscriptions. Refer back to Figure 13-20 for an example of how warnings are displayed.

290

Chapter 13: Replication Monitor

Viewing information about snapshot publications

Although we don't cover snapshot replication to any great degree in this book, you can
use Replication Monitor to view information about your snapshot publications and their
subscriptions as well. If you select a snapshot publication on the left, the right-hand side
displays details about that publication. Figure 13-23 shows the All Subscriptions tab for an
example snapshot publication.

 Figure 13-23: Viewing details about a snapshot publication.

The information shown in the three tabs for snapshot publications is similar to the
information available for merge publications. However, because of the simpler archi-
tecture of snapshot replication, the amount of information available is significantly
reduced. For example, the publication module includes no performance information
on the All Subscriptions tab, and the only warning available on the Warnings tab is the
expiration warning.

291

Chapter 13: Replication Monitor

Subscription Information

Throughout this chapter, you've seen several examples of how Replication Monitor lists
subscriptions in the right-hand window. Everywhere you have a subscription list, you can
access more options available to each subscription by right-clicking the subscription. This
opens a context menu, as shown in Figure 13-24.

 Figure 13-24: Accessing details about your subscription.

In this case, the subscription is a transactional subscription associated with the
MyFirstPublication publication. Notice that, from the context menu, you can start or
stop the synchronization process, reinitialize the subscription, or access the subscription's
properties or agent profile. In addition, you can click the View Details option to open the
Subscription dialog box, shown in Figure 13-25.

292

Chapter 13: Replication Monitor

 Figure 13-25: Viewing details about your transactional subscription.

The Subscription dialog box for a transactional subscription includes three tabs:
Publisher To Distributor History, Distributor To Subscriber History, and Undistributed
Commands. The first two tabs contain information about the last synchronizations.
The first shows information about the synchronizations between the Publisher and
Distributor, and the second tab shows information about the synchronizations between
the Distributor and the selected Subscriber. In the bottom half of each tab, you'll find
a list of the last actions that were performed, such as Bulk copied data into table 'Test'
(1000 rows). This information can sometimes be helpful when troubleshooting as it can
provide insight into when the problem started.

293

Chapter 13: Replication Monitor

The third tab, shown in Figure 13-26, contains information about the number of undis-
tributed commands as well as an estimate for the remaining runtime needed to distribute
those commands. This information can be used to judge how long it will take for the
subscription to catch up with the publication. However, the time estimate displayed here
is not always accurate.

 Figure 13-26: Viewing information about undistributed commands.

For a merge subscription, the Subscription dialog box contains only a single tab,
Synchronization History, which displays information about the last synchronizations,
as shown in Figure 13-27.

294

Chapter 13: Replication Monitor

 Figure 13-27: Viewing additional details about a merge subscription.

For each merge synchronization, you can display detailed statistical information in the
bottom half of the dialog box by selecting that synchronization in the list. If you have a lot
of synchronizations, the drop-down list at the top of the window can help narrow down
the list of synchronizations. The default is to show the last 100 synchronizations.

For a snapshot subscription, the Subscription dialog box also contains only a single
tab, the Distributor To Subscriber History tab. It is similar to the one displayed in
Figure 13-25 for transactional subscriptions.

295

Chapter 13: Replication Monitor

Alerts

When you enable a warning on a publication's Warnings tab, a yellow triangle is displayed
when one of the Subscribers exceeds the set threshold. By default, no additional action is
taken. However, you can also set up a SQL Server alert so that SQL Server notifies you if
that threshold has been exceeded.

Replication supports several predefined alerts that you can utilize. You can set up the
alerts directly in SSMS or on the Warnings tab of Replication Monitor, which is a much
simpler process. If you refer back to Figure 13-19, you'll see that the Warnings tab includes
the Configure Alerts button. When you click that button, the Configure Replication
Alerts dialog box appears, as shown in Figure 13-28.

 Figure 13-28: Configuring replication alerts.

296

Chapter 13: Replication Monitor

To configure an alert, select it from the list and then click the Configure button. This
launches a standard alert properties dialog box, prefilled with the information needed for
the selected alert. An example is shown in Figure 13-29.

Figure 13-29: Creating a replication alert.

297

Chapter 13: Replication Monitor

You can use this form to specify what SQL Server should do, and who should be notified
when the alert fires. For details on how to use alerts, check out the article, Stairway to SQL
Server Agent, Level 3: Agent Alerts and Operators at http://www.sqlservercentral.com/
stairway/72403/.1

Summary

In this chapter, you learned about Replication Monitor and the vast amount of
information it can provide about your replication environment. We examined the
Publisher module and the publication module. We investigated warnings and learned
how to set warning thresholds. We also looked briefly at the information provided for
subscriptions. The chapter closed with an explanation of how to set up SQL Server alerts
related to replication.

1

http://www.sqlservercentral.com/stairway/72403/
http://www.sqlservercentral.com/stairway/72403/

298

Chapter 14: Troubleshooting

Troubleshooting replication can be a daunting task. Any replication setup has a lot of
moving parts, and the tools available do not always make it easy to identify a problem.

As you'll recall from Chapter 13, Replication Monitor provides a single interface
that lets you view information about the components in your replication setup.
Replication Monitor also lets you enable and configure a number of warnings that
are triggered when certain events occur. Therefore it seems to be a good place to
start a troubleshooting process.

However, the warnings provided by Replication Monitor often do little more than
tell you that something isn't right, without providing any specific details. Even if you
manage to find an actual error message, it is often inconclusive or even points in the
wrong direction.

To help you find the answers you need, this chapter explains how to troubleshoot some
of the more common issues you might run into during the setup of replication, including
issues that could arise with a publication or subscription.

The examples in this chapter are based on a transactional replication setup. The setup
includes a publication named ProblemPublication, which has one subscriber. For this
scenario, assume that the person who performed the setup forgot to grant permissions
to the relevant Windows accounts and did not create their associated SQL Server logins.
While it is unlikely you'll encounter exactly this situation in real life, walking through
its resolution we will help you address smaller problems you might encounter. Once
you understand how to investigate the causes of these diverse situations, you'll be better
prepared to handle your own replication issues.

299

Chapter 14: Troubleshooting

Troubleshooting the Publication

When you open Replication Monitor after a publication has generated an error, you will
see red error symbols associated with that publication as well as its Publisher, as shown in
Figure 14-1.

Figure 14-1: Replication Monitor showing that ProblemPublication has a problem.

The Log Reader Agent

If the error is related to one or more of the publication's replication agents, as is the case
in our example, you will also see the red error symbol on the Agents tab, next to each
agent that is having a problem, as shown in Figure 14-2.

300

Chapter 14: Troubleshooting

Figure 14-2: Errors associated with a publication's replication agents.

You can see in Figure 14-2 that the Log Reader Agent has generated errors. You can
find more information about an agent and its errors by double-clicking the agent in
this listing. If you do this with the Log Reader Agent, the Log Reader Agent dialog box
appears, as shown in Figure 14-3.

301

Chapter 14: Troubleshooting

Figure 14-3: Details about the Log Reader Agent.

As you can see, there is not much information available here. However, the error message
recommends checking out the agent job history in the Jobs folder. This refers to the job
history for the SQL Server Agent job that runs the Log Reader Agent. Remember, the
Log Reader Agent runs on the Distributor. So, to get to the job history, connect to the
Distributor in Object Explorer (SQL1\S12B, in my case), open the SQL Server Agent
folder, and double-click Job Activity Monitor, as shown in Figure 14-4.

302

Chapter 14: Troubleshooting

Figure 14-4: Starting the Distributor's Job Activity Monitor.

When the Job Activity Monitor dialog box appears, find the Log Reader Agent's job. The
easiest way to identify this job is to look at the Category column. The category of the Log
Reader Agent's job is REPL-LogReader. Right-click the job and then click View History,
as shown in Figure 14-5.

303

Chapter 14: Troubleshooting

Figure 14-5: Opening the history for the Log Reader Agent in Job Activity Monitor.

This opens the Log File Viewer dialog box. On the right-hand side it shows one row per
job execution, with the latest job on top. If you click the plus sign at the left end of a row,
you can view details about the individual steps that have run as part of the job. Figure 14-6
shows details about the steps in one of those executions.

304

Chapter 14: Troubleshooting

Figure 14-6: SQL Server Agent job history for the Log Reader Agent.

With each execution and execution step in the job history, you'll find one of the four
symbols listed in Table 14-1.

305

Chapter 14: Troubleshooting

Symbol Meaning Symbol Meaning

Failure Running

Success Retrying

Table 14-1: Symbols that indicate execution status.

If you refer back to Figure 14-6, you'll see multiple entries for Step 2. In fact, all
visible entries are for Step 2, which can happen if a problem is encountered during the
execution of that step. If a step fails, SQL Server Agent will either try to re-execute that
step or it will mark it as failed, depending on how the job step was configured. In the
latter situation, you'll see the Failure symbol from Table 1 next to that step. However, in
our Log Reader Agent example, the step keeps retrying, so you see the Retrying symbol
instead. In either case, the actual error is often not found in the row that is indicating
the problem but in one of the preceding rows. In most cases, that row will still show the
Running symbol.

In our case, the error message can be found in the second job step row. If you click that
row, the bottom half of the window will show detailed information about that job step
execution. By scrolling down all the way, you can see the error message. (Refer back to
Figure 14-6.) The actual error message is as follows:

Login failed for user 'DOMAIN\SQL2_S12B_LogReader'.

This looks helpful at first glance, but it really isn't. It is telling us that the login failed.
However, at no point does the job step output reveal what it was trying to log on to.
Usually a SQL Server error has a telling "Msg" in front, such as the one shown in the
following error message:

306

Chapter 14: Troubleshooting

Msg 18456, Level 14, State 1, Server SQL1\S12B, Line 1
Login failed for user 'SomeUser'.

However, since that information is stripped out of our job step message, we can't even be
sure that it's a SQL Server error instead of, for example, a Windows error.

In this case, however, I know that the attempt to connect to the Distributor SQL Server
instance failed. The reason I know this is that errors occurring while connecting to
the Distributor are the only ones where no instance name is included. The error here
is caused by DOMAIN\SQL2_S12B_LogReader not being a known SQL login on the
Distributor. To correct this situation, we're going to use a short T-SQL script (rather than
using a wizard) to create the login:

CREATE LOGIN [DOMAIN\SQL2_S12B_LogReader] FROM WINDOWS WITH DEFAULT_
DATABASE=[tempdb]

The default database does not really matter in this case. I usually set it to tempdb for all
my logins because that is the place where the least amount of damage can be caused if
one forgets to explicitly select a database after logging in.

After running the above T-SQL snippet on the Distributor, go back to the Log File Viewer
and click Refresh. You should now see a new job step execution, although you might have
to wait a minute for this to show up. As it turns out, this new job step execution still ends
in a retry. The new error is shown in Figure 14-7.

307

Chapter 14: Troubleshooting

Figure 14-7: Log Reader Agent still failing to connect to Distributor.

This message is another example of why troubleshooting replication can be difficult. It
states that SQL2\S12B does not exist or is not a valid Publisher. It looks as though it's
indicating that the agent cannot connect to the Publisher. However, this error is actually
still caused on the Distributor. The last part of the error, "…you may not have permission
to see available Publishers," is pointing to the actual problem. While the Log Reader Agent
can now successfully connect to the Distributor, the login has not yet been mapped to a
user in the distribution database. Therefore, it cannot access the list of valid Publishers.
To fix this, we need to run more T-SQL on the Distributor:

USE [distribution]
GO
CREATE USER [DOMAIN\SQL2_S12B_LogReader] FOR LOGIN [DOMAIN\SQL2_S12B_LogReader]
ALTER ROLE [db_owner] ADD MEMBER [DOMAIN\SQL2_S12B_LogReader]

308

Chapter 14: Troubleshooting

The T-SQL creates the user account and adds it to the db_owner role (which is required,
as you will recall from Chapter 5).

Creating the user and granting the missing permissions, however, still does not solve
the problem. After another refresh, the job history of the Log Reader Agent still shows
continuous retries. Checking the latest execution in the log reveals that there is now a
different problem: the agent cannot connect to the Publisher. This information is again
all the way at the bottom of the step output, as shown in Figure 14-8.

Figure 14-8: The Log Reader Agent failing to connect to the Publisher.

The error you will find there sounds strangely familiar:

Login failed for user 'DOMAIN\SQL2_S12B_LogReader'.

309

Chapter 14: Troubleshooting

This is exactly the same error that we had before. However, this time, if you go up a few
lines in the output, you will see the helpful remark "Validating publisher." So while the
error doesn't seem much more helpful than the first time we saw it, this additional piece
of information at least tells us what the Log Reader Agent was trying to do when the
error occurred.

So this time, we'll connect to the Publisher and run the same T-SQL snippet as before, in
order to resolve this problem:

CREATE LOGIN [DOMAIN\SQL2_S12B_LogReader] FROM WINDOWS WITH DEFAULT_
DATABASE=[tempdb]

Unfortunately, this only leads us to the next problem, as shown in Figure 14-9.

Figure 14-9: Message indicating that the publication database cannot be opened.

310

Chapter 14: Troubleshooting

This error message is actually surprisingly helpful. To resolve the issue raised, we need
to grant the newly created login db_owner rights in the publication database (ReplA,
in my case):

USE [ReplA]
GO
CREATE USER [DOMAIN\SQL2_S12B_LogReader] FOR LOGIN [DOMAIN\SQL2_S12B_LogReader]
ALTER ROLE [db_owner] ADD MEMBER [DOMAIN\SQL2_S12B_LogReader]

After we grant this last bit of access to the publication database, the Log Reader Agent
gets to work successfully. As you can see in Figure 14-10, the message associated with the
most recent execution indicates that the replication has been successfully started.

Figure 14-10: Message indicating that the Log Reader Agent started successfully.

311

Chapter 14: Troubleshooting

The Snapshot Agent

Let's return our attention to Replication Monitor. Usually, Replication Monitor informs
us of a problem by placing an issue-related icon in the left hierarchy section on the node
where the problem originates, as well as each level above that node. Figure 14-2 showed
an example of this process. However, for an uninitialized subscription, the warning icon
is displayed only on the subscription itself. Figure 14-11 shows an example of this. The
left-side hierarchy indicates that everything is up and running, but on the right-hand
side, you can see that this is not the case.

Figure 14-11: Hidden problem: an uninitialized subscription.

We can quickly discover why our subscription is not yet initialized. The Agents tab,
shown in Figure 14-12, tells us that the Snapshot Agent was never executed.

312

Chapter 14: Troubleshooting

Figure 14-12: Failure of the Snapshot Agent to start.

This is quickly fixed. Right-click the Snapshot Agent listing on the Agents tab, and then
click Start Agent, as shown in Figure 14-13.

313

Chapter 14: Troubleshooting

Figure 14-13: Starting the Snapshot Agent.

After starting the Snapshot Agent, everything appears to be running great, as you can see
in Figure 14-14.

The Snapshot Agent usually starts, does its thing, and stops right away. Given that
our database is so small, this process should finish in a few seconds. So let's wait. After a
few minutes of staring at this screen you probably start wondering why we still show a
status of Running. This makes no sense if everything really is running as smoothly as the
Replication Monitor leads us to believe.

314

Chapter 14: Troubleshooting

Figure 14-14: Everything is running fine – or is it?

In reality, the Snapshot Agent failed right away. However, Replication Monitor relies
on the Snapshot Agent to regularly report status information. Only if that report is not
sent for about 10 minutes does Replication Monitor report a problem. You can see this in
Figure 14-15. Notice the reported execution duration.

315

Chapter 14: Troubleshooting

Figure 14-15: The Snapshot Agent showing a problem after 10 minutes.

Unfortunately, double-clicking the listing for the failed Snapshot Agent doesn't provide
us with any more details, as Figure 14-16 shows.

316

Chapter 14: Troubleshooting

Figure 14-16: No more information available here, either.

The only hint we're given is to make sure everything is still working. However, we
know already that's not the case, so let's check out the next tool of choice, the Job
Activity Monitor.

The Snapshot Agent also runs on the Distributor, so we need to go to the same place we
went to earlier for the Log Reader Agent. As before, you can identify the Snapshot Agent
job by looking at the job category column. Figure 14-17 shows that a problem was indeed
encountered during the last execution of the Snapshot Agent.

317

Chapter 14: Troubleshooting

Figure 14-17: Failure of the last Snapshot Agent execution.

For more details, let's look at the history for the Snapshot Agent job. Right-click the job
and then click View History. This launches the Log File Viewer, shown in Figure 14-18.

318

Chapter 14: Troubleshooting

Figure 14-18: Snapshot Agent job history.

Figure 14-18 shows the history for my setup. Step 1 succeeded and Step 2 failed during the
last execution. Again, the actual error is not in the entries that have the error symbol, but
in the last one that does not. In this case, the error is one we've seen before:

Login failed for user 'DOMAIN\SQL2_S12B_Snapshot'.

319

Chapter 14: Troubleshooting

A few lines up, we can see that the agent was trying to connect to the Distributor
when the error happened. By now, we know what we have to do to fix this. Execute the
following T-SQL snippet on the Distributor:

CREATE LOGIN [DOMAIN\SQL2_S12B_Snapshot] FROM WINDOWS WITH DEFAULT_
DATABASE=[tempdb]

To see if this change helped, we have to manually start the Snapshot Agent again, as
it is not configured to run continuously like the Log Reader Agent. You can use the
Replication Monitor to start the Snapshot Agent, as shown in Figure 14-19.

Figure 14-19: Restarting the Snapshot Agent.

Because we already know that the above change was not sufficient, we do not wait for the
Replication Monitor to get to the same realization but head over to the job's history right
away. You might have to refresh the history by clicking the Refresh icon in the top row.
As expected, Figure 14-20 shows that there is another problem to fix.

320

Chapter 14: Troubleshooting

Figure 14-20: The Snapshot Agent's failure to access the distribution database.

The error sounds again very familiar. As before, it seems to tell us that we lost the
Publisher in the depth of our network. However, it really means that the Snapshot Agent
cannot access the distribution database. The Snapshot Agent also needs db_owner level
permissions in this database, so we must run the following T-SQL snippet against the
Distributor:

USE [distribution]
GO
CREATE USER [DOMAIN\SQL2_S12B_Snapshot] FOR LOGIN [DOMAIN\SQL2_S12B_Snapshot]
ALTER ROLE [db_owner] ADD MEMBER [DOMAIN\SQL2_S12B_Snapshot]

321

Chapter 14: Troubleshooting

As before, to see if this had the desired effect, we must restart the Snapshot Agent. This,
however, leads to our next error, which occurs when validating the Publisher. Figure 14-21
shows the latest error message.

Figure 14-21: Login failure while validating the Publisher.

To fix our latest problem, we need to create the missing login on the Publisher:

CREATE LOGIN [DOMAIN\SQL2_S12B_Snapshot] FROM WINDOWS WITH DEFAULT_
DATABASE=[tempdb]

After running this statement, we can again use Replication Monitor to restart the
Snapshot Agent. And then we return to Snapshot Agent's job history. Figure 14-22 shows
our latest error.

322

Chapter 14: Troubleshooting

Figure 14-22: The Snapshot Agent's failure to access the publication database.

Again the fix is easy. We need only to grant the login db_owner permissions in the publi-
cation database by running the following T-SQL snippet on the Publisher:

USE [ReplA]
GO
CREATE USER [DOMAIN\SQL2_S12B_Snapshot] FOR LOGIN [DOMAIN\SQL2_S12B_Snapshot]
ALTER ROLE [db_owner] ADD MEMBER [DOMAIN\SQL2_S12B_Snapshot]

323

Chapter 14: Troubleshooting

After restarting the Snapshot Agent and refreshing the history in the SQL Server Agent
Log File Viewer, we will be confronted with the last problem we need to fix for the
Snapshot Agent. The error message that points to the problem is shown in Figure 14-23.

Figure 14-23: The Snapshot Agent's failure to access the snapshot folder.

The error indicates denied access to a lengthy network path. If you get an error like this,
the most likely reason is that the Snapshot Agent does not have the required permissions
on the snapshot folder. Remember, the account that is used to execute the Snapshot
Agent needs to have write access to this folder.

324

Chapter 14: Troubleshooting

To grant the required permission, log on to the server that hosts the Distributor (using
Remote Desktop, if necessary), and navigate to the snapshot folder in Windows Explorer.
Right-click the folder and click Properties. Go to the Sharing tab and click the Advanced
Sharing button. In the Advanced Sharing dialog box, click the Permissions button to
open the Permissions dialog box, shown in Figure 14-24.

Figure 14-24: Setting the required permissions for the snapshot folder.

Add the required permissions and close all dialog boxes by clicking the OK button
of each one.

After we've addressed the share-access problem, the publication should be up and
running. The Agents tab for our publication in Replication Monitor should inform us that
the Snapshot Agent completed successfully after creating a snapshot. The Log Reader
Agent, on the other hand, is still running but was able to successfully complete at least
one action. Figure 14-25 shows the status of both replication agents.

325

Chapter 14: Troubleshooting

Figure 14-25: Publication and replication agents now running successfully.

Troubleshooting a Subscription

Although we've addressed the issues with the replication agents associated with our
publication, the subscription in our example is still not working. We need to return to
Replication Monitor and view our publication's All Subscriptions tab. At first, it appears
that our subscription is running as expected, as shown in Figure 14-26. However, our
subscription is still uninitialized.

326

Chapter 14: Troubleshooting

Figure 14-26: A still uninitialized subscription.

The fact that no Performance or Latency value is displayed is a strong indication
that something is seriously wrong. To get more information, you can double-click the
uninitialized subscription. This opens a dialog box that displays detail information about
the current state of the subscription. The Distributor to Subscriber History tab gives us
information about the past data movement between the Distributor and the Subscriber.
As you can see in Figure 14-27, there is no sign that anything is wrong.

327

Chapter 14: Troubleshooting

Figure 14-27: History of past data movement between the Distributor and the Subscriber.

So we have to go somewhere else to find the cause of our problem. The data movement
between Distributor and Subscriber is handled by the Distribution Agent. The next thing
to check, therefore, is whether the Distribution Agent's job is reporting any problems.
Where you find that job is dependent on the subscription model. In the case of a pull
subscription, the Distribution Agent runs on the Subscriber. However, our example is
set up as a push subscription, so we need to connect to the Distributor. Once connected,
open the Job Activity Monitor and find the Distribution Agent's job. As before, you can
use the job category to identify this job, which is highlighted in Figure 14-28.

328

Chapter 14: Troubleshooting

Figure 14-28: The Distribution Agent's job looking good – almost.

On first glance, everything seems fine here too. However, note the Status column, which
says: "Between retries."

This means that, during the execution of the previous job step, a problem was encoun-
tered, and now the SQL Server Agent is waiting a minute before retrying that same step.
Right-click the job and select View history to get to the root of this problem. Figure 14-29
shows the history with its many rerun attempts of Step 2.

329

Chapter 14: Troubleshooting

Figure 14-29: The Distribution Agent's job history showing multiple attempts to run.

Figure 14-29 also shows the error that is causing the continuous retries: the connection
to the Distributor keeps failing. To address this issue, we must create the missing login by
executing the following T-SQL snippet on the Distributor:

CREATE LOGIN [DOMAIN\SQL3_S12B_DistPush] FROM WINDOWS WITH DEFAULT_
DATABASE=[tempdb]

330

Chapter 14: Troubleshooting

Not surprisingly, the step continues to fail despite the new login. That's because the
login doesn't yet have access to the subscription database. You can see the new error in
Figure 14-30.

Figure 14-30: Message indicating that the user is lacking permissions.

331

Chapter 14: Troubleshooting

To resolve this issue, we must create the user in the distribution database and add it to
the db_owner role:

USE [distribution]
GO
CREATE USER [DOMAIN\SQL3_S12B_DistPush] FOR LOGIN [DOMAIN\SQL3_S12B_DistPush]
ALTER ROLE [db_owner] ADD MEMBER [DOMAIN\SQL3_S12B_DistPush]

So far, it looks as if the Replication monitor is not useful at all. However, if you wait long
enough after a problem occurs, Replication Monitor will eventually show that there is a
problem too. Usually you will have to wait less than 10 minutes for an error to show up.
Figure 14-31 shows an example telling us that our subscription still has a problem.

Figure 14-31: The Replication Monitor eventually catching up with the error.

Double-clicking the error opens the Subscription dialog box. In this case, it even shows a
useful error message, as you can see in Figure 14-32.

332

Chapter 14: Troubleshooting

Figure 14-32: The Replication Monitor showing the connector error.

Despite the information provided by Replication Monitor in this example, I tend to
concentrate on the job history for replication troubleshooting, at least during the setup
phase of replication, because the information there is usually more comprehensive and
up to date. However, after replication has been running for a while, you might encounter
problems about which you can get good details only by using Replication Monitor. For an
example, see the section, Data problems, later in this chapter.

Let's get back to our current error. It tells us that the process cannot connect to the
Subscriber. So, let's create the missing login by running this snippet on the Subscriber:

CREATE LOGIN [DOMAIN\SQL3_S12B_DistPush] FROM WINDOWS WITH DEFAULT_
DATABASE=[tempdb]

333

Chapter 14: Troubleshooting

The next two errors, shown in Figures 14-33 and 14-34 are by now neither surprising nor
hard to fix. Following each figure, you'll find the T-SQL snippets that you need to run to
fix the problems. Because both errors deal with access to the subscription database, you
must connect to the Subscriber before running these statements.

Figure 14-33: Failure to open the subscription database.

334

Chapter 14: Troubleshooting

To address the error shown in Figure 14-33, run the following T-SQL snippet on
the Subscriber:

USE [ReplB]
GO
CREATE USER [DOMAIN\SQL3_S12B_DistPush] FOR LOGIN [DOMAIN\SQL3_S12B_DistPush]

Figure 14-34: Membership required in the db_owner fixed database role.

To address the error shown in Figure 14-34, run the following T-SQL snippet on
the Subscriber:

USE [ReplB]
GO
ALTER ROLE [db_owner] ADD MEMBER [DOMAIN\SQL3_S12B_DistPush]

335

Chapter 14: Troubleshooting

The last error that we have to deal with is shown in Figure 14-35.

Figure 14-35: Failure to read from the snapshot folder.

This is, again, not surprising. To fix this problem, you need to log on to the Distributor
and grant the account executing the Distribution Agent read access to the snapshot folder
share. Figure 14-36 shows what the Permissions dialog box looks like after adding the
new permission. This is the same dialog box that is shown in Figure 14-24. Just before that
figure, you can also find details on how to access the dialog box.

336

Chapter 14: Troubleshooting

Figure 14-36: Granting read access to the snapshot folder.

After performing the last step, the Distribution Agent should now run successfully, as
shown in Figure 14-37.

337

Chapter 14: Troubleshooting

Figure 14-37: The Distribution Agent running as expected.

If you now go back to Replication Monitor, you should see a happy subscription with
a status of Running and performance displayed as Excellent. However, in the first few
minutes after setting up a subscription or fixing a subscription problem, Replication
Monitor often reports the performance as critical, as shown in Figure 14-38. That usually
goes away after a few moments, so don't be too alarmed if performance is off at first.

338

Chapter 14: Troubleshooting

Figure 14-38: The subscription's performance showing as critical.

But what about the PAL?

If you paid attention in Chapter 7, you might be surprised now. That chapter clearly
states that the account executing the Distribution Agent needs to be a member of the
PAL. According to the official documentation in Books Online, this is a requirement.
In fact, this requirement is mentioned in many places throughout the documentation.
However, in a few situations SQL Server 2012 seems not to enforce this requirement.
For example, as we saw in our troubleshooting exercises in this chapter, we received no
errors requiring that logins be added to the PAL. This is most certainly not intentional
and therefore you should always add the Distribution Agent account to the PAL, just to
make sure that the next Critical Update or Service Pack you install does not shut down
your replication setup. Refer back to Chapter 6 for details on how to add an account to
the PAL.

339

Chapter 14: Troubleshooting

Other Tools and Issues

The following sections list a few more issues, as well as techniques that you should be
aware of when troubleshooting replication.

Tracer tokens

One important tool in the DBA's toolbox is the tracer token. We already covered tracer
tokens in Chapter 13, so here we will repeat only the highlights. Tracer tokens allow you
to measure the latency between the Publisher and the Distributor as well as between the
Distributor and the Subscriber. However, they can also be used to check for problems. If
you create a tracer token and it gets replicated to the Subscriber in a reasonable amount
of time, you can be fairly confident that everything is working correctly. Figure 14-39
shows a successful tracer token run.

Figure 14-39: Tracer token confirming that the subscription is working properly.

340

Chapter 14: Troubleshooting

So, if you are unsure whether data is moving, just create a tracer token and in a few
seconds you will know. If you regularly use tracer tokens, you can even detect trends
such as increasing latency. That can help you identify problems before they become
too painful.

Always check the details

You should also be aware that on rare occasions Replication Monitor can show misleading
information. For example, the subscription information shown in Figure 14-40 indicates
that everything is working as expected. However, if you look closely you will see that the
latency value is 00:00:00, a value not likely to appear in a live system.

Figure 14-40: Replication Monitor showing misleading information.

341

Chapter 14: Troubleshooting

If such a value shows up, it might just indicate that there is currently no data that needs
to be replicated. On a production system, however, it almost always means trouble.

In my case, the subscription was marked for re-initialization using an existing snapshot.
However, the existing snapshot was already expired, so the subscription never finished its
initialization step. If you double-click the subscription, the Subscription dialog box will
open and reveal that the initial snapshot is not yet available, as shown in Figure 14-41.

Figure 14-41: Warning message for an unavailable or lost snapshot.

342

Chapter 14: Troubleshooting

To resolve this issue, you need to manually start the Snapshot Agent, as we did earlier in
this chapter. You might also have to reinitialize the subscription after the Snapshot Agent
is finished. Sometimes in this situation the subscription gets stuck and does not use the
new snapshot on its own.

Replication Monitor is a helpful tool when it properly notifies you that there's a problem;
however, if it shows that everything is in great shape, make sure you look twice, so you
don't miss a subtle hint indicating that there is a problem.

Data problems

If there is a problem in the replicated data, the Distribution Agent will keep trying to
resolve it. For example, Figure 14-42 shows the Distributor To Subscriber History for
ProblemPublication. It has a bunch of error rows with start times about two-and-
a-quarter minutes apart. The error is the same for all of them: "The row was not found
at the Subscriber when applying the replicated command." This error is caused by a
mismatch between the data in the publication database and the subscription database,
potentially caused by a delete being executed at the Subscriber. Remember, while the
subscription database is technically read-write, the target tables of a subscription to a
transactional publication should be handled as if they were read-only.

343

Chapter 14: Troubleshooting

Figure 14-42: Errors indicating problems with the replicated data.

This error prevents the Distribution Agent from continuing because it could cause
inconsistent data on the Subscriber. Instead, the Distribution Agent keeps trying, in
the hopes that the error magically disappears. Each execution takes about one and a
quarter minutes, as you can see in the Duration column in Figure 14-42. During that
time, the replication agent shows that everything is working smoothly, which is what
Figure 14-43 shows.

344

Chapter 14: Troubleshooting

Figure 14-43: Replication Monitor indicating that everything is up and running...

However, during the remaining minute of the retrial interval, the Replication Monitor
display looks vastly different, as shown in Figure 14-44.

345

Chapter 14: Troubleshooting

Figure 14-44: … or maybe not.

So, if you happen to look at the Replication Monitor while the issue is occurring, you'll
see what is shown in either Figure 14-43 or Figure 14-44. Which results you receive
depends on whether the process is currently retrying or not. That means that, if you only
briefly look at the tool, you'll get to see the error in less than half the cases, based on the
times in my example.

Most problems, however, such as the one mentioned above, will show up in the
Subscription dialog box (Figure 14-42) associated with a specific subscription. Therefore
it is a good idea to get into the habit of opening the dialog box regularly. Remember, you
access the dialog box by double-clicking the subscription itself in Replication Monitor.

346

Chapter 14: Troubleshooting

To troubleshoot this and other data-related problems, review the error message itself,
such as the one shown at the bottom of Figure 14-42. Notice that it contains a link to
a Microsoft help page, which provides an explanation of what went wrong. There you
will also find tips of how to resolve the issue. This link is displayed only when using
Replication Monitor. The job history shows the error, but omits the link.

Summary

This chapter did a walk-through of a few troubleshooting scenarios found in a transac-
tional replication setup. It focused on problems you might encounter during the SQL
Server replication setup and provided a few ways to identify problems that you might
encounter after your replication setup has been running for a while.

The takeaway from this chapter is that Replication Monitor, while being a good, and
often helpful, tool to get a general feel for the health of your replication installation, does
not always make problems obvious. You have to be able to read their subtle hints and then
go elsewhere to get complete information. Most of the time this "elsewhere" is the SQL
Server Agent job history of one of the Replication Agent's jobs.

The chapter also briefly mentioned that you should use tracer tokens or a similar tool
to regularly monitor the latency of your installation. This not only provides you with
information about performance, it also provides an early warning if the continuous data
stream is blocked by, for example, a data error.

This chapter also concludes this book. I hope you found it to be useful and had as much
fun working through it as I had writing it. The book covered transactional replication and
merge replication. It also introduced tools for monitoring and troubleshooting. From the
beginning, we also paid special attention to following the "least privilege" principle when
setting up replication to help ensure that you're creating secure replication installations
from the get-go.

SQL Server
and .NET Tools

from Red Gate Software

Pricing and information about Red Gate tools are correct at the time of

going to print. For the latest information and pricing on all Red Gate's

tools, visit www.red-gate.com

"Just purchased SQL Compare. With the
productivity I'll get out of this tool, it's like
buying time."
Robert Sondles Blueberry Island Media Ltd

SQL Compare® Pro

SQL Data Compare Pro

 Eliminate mistakes migrating database changes from dev, to test, to production

 Speed up the deployment of new database schema updates

 Find and fix errors caused by differences between databases

 Compare and synchronize within SSMS

 Save time by automatically comparing and synchronizing your data

 Copy lookup data from development databases to staging or production

 Quickly fix problems by restoring damaged or missing data to a single row

 Compare and synchronize data within SSMS

"We use SQL Data Compare daily and it has
become an indispensable part of delivering
our service to our customers. It has also
streamlined our daily update process and
cut back literally a good solid hour per day."
George Pantela GPAnalysis.com

$595

$595

Compare and synchronize SQL Server database schemas

Compares and synchronizes SQL Server

Visit www.red-gate.com for a 14-day, free trial

"SQL Prompt is hands-down one of the coolest
applications I've used. Makes querying/developing
so much easier and faster."
Jorge Segarra University Community Hospital

SQL Prompt Pro

SQL Source Control

 Write SQL smoothly, with code-completion and SQL snippets

 Reformat SQL to a preferred style

 Keep databases tidy by finding invalid objects automatically

 Save time and effort with script summaries, smart object renaming, and more

 Bring all the benefits of source control to your database

 Source control schemas and data within SSMS, not with offline scripts

 Connect your databases to TFS, SVN, SourceGear Vault, Vault Pro, Mercurial,

 Perforce, Git, Bazaar, and any source control system with a capable command line

 Work with shared development databases, or individual copies

 Track changes to follow who changed what, when, and why

 Keep teams in sync with easy access to the latest database version

 View database development history for easy retrieval of specific versions

$295

 from $295

Write, edit, and explore SQL effortlessly

Connect your existing source control system to SQL Server

Visit www.red-gate.com for a free trial

Deployment Manager

 Deploys your whole application – ASP.NET sites, dependent
 assemblies, and databases – in one process

 Makes deployment repeatable with a minimum of custom scripting

 Shows you which version of your software is running on each dev,
 test, staging, and production environment, from a central dashboard

 Works with local, remote, and Cloud-based servers

 Uses public/private key encryption to keep deployments over the
 Internet secure

from Free

Automated deployment for your applications and databases

Visit www.red-gate.com for a 28-day, free trial

"Our old deployment process
was cumbersome and stressful
– now it's almost fun."
Mattias Geigant
Developer, BEAB

"SQL Backup Pro cut the backup time for our
most mission-critical database by 92%, and
provided us with 95% compression. Built-
in network resilience has also reduced our
failure rate to zero. I'm absolutely amazed at
how well it performs."
Kiara Rodemaker
Manager, IT Accounting Services, Czarnowski

SQL Backup Pro

 Compress SQL Server database backups by up to 95% for
 faster, smaller backups

 Protect your data with up to 256-bit AES encryption

 Strengthen your backups with network resilience to enable
 a fault-tolerant transfer of backups across flaky networks

 Control your backup activities through an intuitive interface,
 with powerful job management and an interactive timeline

 Get integrated backup verification with automated restore
 + DBCC CHECKDB

 Quickly, simply, and securely upload and store a copy of your
 backup offsite, in hosted storage

$795

Compress, verify, and encrypt SQL Server backups

Visit www.red-gate.com for a 14-day, free trial

 Intuitive overviews at global, cluster, machine, SQL Server,
 and database levels for up-to-the-minute performance data

 Use SQL Monitor's web UI to keep an eye on server performance
 in real time on desktop machines and mobile devices

 Intelligent SQL Server alerts via email and an alert inbox in the
 UI, so you know about problems first

 Comprehensive historical data, so you can go back in time to
 identify the source of a problem

 View the top 10 expensive queries for an instance or database
 based on CPU usage, duration, and reads and writes

 PagerDuty integration for phone and SMS alerting

 Fast, simple installation and administration

 Add your own T-SQL scripts with
 the custom metrics feature to
 expand SQL Monitor's range

"Being web based, SQL Monitor is
readily available to you, wherever you
may be on your network. You can
check on your servers from almost
any location, via most mobile devices
that support a web browser."
Jonathan Allen
Senior DBA, Careers South West Ltd

SQL Monitor from $795

SQL Server performance monitoring and alerting

Visit www.red-gate.com for a 14-day, free trial

SQL DBA Bundle

The SQL DBA Bundle contains:

SQL Backup Pro SQL Monitor SQL Multi Script SQL Compare Standard

SQL Data Compare Standard SQL Prompt SQL Doc

The tools in the bundle can be bought separately with a combined value of $3,565, or
purchased together for $1,895, saving 45% on the individual tool prices.

$1,895

Seven essential tools for database administration

Visit www.red-gate.com for a 28-day, free trial

Troubleshooting
Get an alert within seconds of a problem arising,

gain insight into what happened, and diagnose the

issue, fast.

Productivity
Save time writing SQL in SQL Server Management

Studio or Visual Studio, with code-completion and

customizable SQL snippets.

Documentation
Automatically generate database documentation

with a couple of clicks in SSMS, so you can save

time and keep your team up to date.

Backup & Recovery
Protect your data with highly-compressed, fully-

verified, and encrypted backups, and ensure

reliable restores with backup verification.

Performance Monitoring & Tuning
Monitor your servers in real time and obtain the

performance data and alerts that are important to

your business.

Change management
Get a simple, clear rundown of your schema

and data changes, and sync database changes

automatically.

Storage & Capacity Planning
With four levels of backup compression, you can

make the most of your storage space. Monitor data

growth easily, so you can plan how best to deal

with it.

SQL Toolbelt contains:

 SQL Compare Pro

 SQL Data Compare Pro

 SQL Source Control

 SQL Backup Pro

 SQL Monitor

 SQL Prompt Pro

 SQL Data Generator

 SQL Doc

 SQL Dependency Tracker

 SQL Packager

 SQL Multi Script Unlimited

 SQL Search

 SQL Comparison SDK

 SQL Object Level Recovery Native

"The SQL Toolbelt provides tools that database

developers, as well as DBAs, should not live without."
William Van Orden Senior Database Developer, Lockheed Martin

You can buy our acclaimed SQL Server tools individually or bundled. Our most popular
deal is the SQL Toolbelt: fourteen of our SQL Server tools in a single installer, with a
combined value of $5,930 but an actual price of $2,195, a saving of 65%.

Fully compatible with SQL Server 2000, 2005, and 2008.

SQL Toolbelt $2,195

The essential SQL Server tools for database professionals

Visit www.red-gate.com for a 28-day, free trial

 Drill down to slow lines of code with line-level code timings

 Analyse both your .NET code and SQL queries in a single profiling session

 Optimize .NET application performance

"Freaking sweet! We have a known memory
leak that took me about four hours to find using
our current tool, so I fired up ANTS Memory
Profiler and went at it like I didn't know the leak
existed. Not only did I come to the conclusion
much faster, but I found another one!"
Aaron Smith IT Manager, R.C. Systems Inc.

"ANTS Performance Profiler took
us straight to the specific areas of
our code which were the cause of
our performance issues."
Terry Phillips Sr Developer,
Harley-Davidson Dealer Systems

"I have integrated ANTS Profiler into
my entire development process and
it has truly helped us write better
performing applications from the
beginning by ensuring that we always
know exactly what is going on."
Mitchell Sellers MVP

Visit www.red-gate.com for a 28-day, free trial

ANTS Memory Profiler

ANTS Performance Profiler

 Zero in on the causes of memory leaks, fast

 Visualize the relationship between your objects and identify references which

 should no longer be held in memory

 Optimize your application's memory usage

$495

 from $395

Find memory leaks and optimize memory usage of your .NET applications

Identify performance bottlenecks within minutes

"EVERY DEVELOPER
NEEDS THIS TOOL!"
Daniel Larson Software Architect,
NewsGator Technologies

"One of the most useful, practical debugging tools that
I have ever worked with in .NET! It provides complete
browsing and debugging features for .NET assemblies,
and has clean integration with Visual Studio."
Tom Baker Consultant Software Engineer, EMC Corporation

.NET Reflector

SmartAssembly

 See inside assemblies, libraries, and frameworks so you can understand how they

 work, even if you don't have the source

 Decompile, search, and analyze any .NET assembly in C#, Visual Basic, and IL

 Step straight into decompiled assemblies while debugging in Visual Studio, so you

 can debug 3rd-party code just like your own

 Obfuscation: Obfuscate your .NET code to secure it against

 reverse engineering. Multiple layers of protection defend

 your software against decompilation and cracking.

 Automated Error Reporting: Get quick and automatic reports

 on exceptions your end-users encounter, and identify

 unforeseen bugs within hours or days of shipping. Receive

 detailed reports containing a stack trace and values of the

 local variables, making debugging easier.

$95

$595

Decompile, debug, and understand any .NET code

Prepare your application for the world

Visit www.red-gate.com for a 28-day, free trial

"Knowing the frequency
of problems (especially
immediately after a release)
is extremely helpful in
prioritizing and triaging bugs
that are reported internally.
Additionally, by having the
context of where those
errors occurred, including
debugging information, really
gives you that leap forward
to start troubleshooting and
diagnosing the issue."
Ed Blankenship
Technical Lead and MVP

SQL Server Execution Plans (2nd Edition)

Grant Fritchey

Every Database Administrator, developer, report writer, and

anyone else who writes T-SQL to access SQL Server data, must

understand how to read and interpret execution plans. This

book leads you right from the basics of capturing plans, through

how to interrupt them in their various forms, graphical or XML,

and then how to use the information you find there to diagnose

the most common causes of poor query performance, and so

optimize your SQL queries, and improve your indexing strategy.

ISBN: 978-1-906434-93-9

Published: October 2012

SQL Server Concurrency:
Locking, Blocking and Row Versioning
Kalen Delaney

Your application can have impeachable indexes and queries,

but they won't help you if you can't get to your data because

another application has it locked. That's why every DBA and

developer must understand SQL Server concurrency and how

to troubleshoot excessive blocking or deadlocking.

ISBN: 978-1-906434-91-5

Published: September 2012

SQL Server Backup and Restore
Shawn McGehee

A DBA's tasks from day to day are rarely constant; with one

exception: the need to ensure each and every day that any

database in their charge can be restored and recovered, in the

event of error or disaster. In this book, you'll discover how to

perform each of these backup and restore operations using

SQL Server Management Studio (SSMS), basic T-SQL scripts

and Red Gate's SQL Backup tool.

ISBN: 978-1-906434-86-1

Published: May 2012

The Red Gate Guide:
SQL Server Team-based Development
Phil Factor, Grant Fritchey, Alex Kuznetsov, and Mladen
Prajdić

This book shows how to use a mixture of home-grown scripts,

native SQL Server tools, and tools from the Red Gate SQL

Toolbelt, to successfully develop database applications in a

team environment, and make database development as similar

as possible to "normal" development.

ISBN: 978-1-906434-59-5

Published: November 2010

	Cover - Fundamentals of SQL Server 2012 Replication

	SQL_Server_Replication_S-Meine_EBOOK_12-08-13
	Chapter 1: Overview of SQL Server Replication
	Putting SQL Server Replication to Work
	Replication Components
	Articles
	Publications
	Publication database
	Publisher
	Distributor
	Distribution databases
	Subscriber
	Subscriptions
	Subscription databases
	Replication agents
	Replication maintenance jobs

	How Terms Are Used
	Replication Types
	Snapshot replication
	Transactional replication
	Merge replication

	Summary

	Chapter 2: Configuring a Basic Replication Setup
	Setting Up the Distributor
	Setting Up a Publication
	Setting Up a Subscription
	Success!
	Summary

	Chapter 3: The Role of the Distributor
	Distribution Components
	The distribution database
	The snapshot folder
	The replication agents

	Best Practices
	Setting up Distribution
	Removing replication
	Setting up the Distributor
	Setting up distribution on the Publisher
	Implementing multiple distribution databases

	Summary

	Chapter 4: Transactional Replication – the Replication Agents
	Replication Agents
	Snapshot Agent
	Log Reader Agent
	Distribution Agent

	Summary

	Chapter 5: Transactional Replication – the Publication
	Preparing to Create a Publication
	Creating a database
	Enabling a database for replication

	Creating a Publication
	Setting up your database
	Setting up your articles
	Setting up the initial snapshot
	Setting up security
	Completing the publication setup

	Potential Problems
	Summary

	Chapter 6: The Publication Access List
	Setting Up a Subscription
	Configuring the Publication Access List
	Creating the Subscription
	Summary

	Chapter 7: Transactional Replication – the Subscription
	Setting up a Subscription
	Connecting to the Publisher
	Selecting the Distribution Agent location
	Specifying the Subscriber and the subscription database
	Configuring security on the Distribution Agent

	Account Permissions
	Finalizing the Subscription
	Configuring Retention
	Configuring retention on the Distributor
	Configuring retention on the Publisher

	Summary

	Chapter 8: SQL Server Agent Jobs for Transactional Replication
	SQL Server Agent Jobs
	Snapshot Agent jobs
	Log Reader Agent job
	Distribution Agent jobs
	Replication Maintenance jobs

	Creating the SQL Server Agent Jobs
	Local distribution
	Remote distribution
	Publication
	Push subscription
	Pull subscription

	Summary

	Chapter 9: Merge Replication – the Replication Agents
	Merge Replication Components
	Snapshot Agent
	Triggers, tables, and views
	Merge Agent

	Summary

	Chapter 10: Merge Replication – the Publication
	Enabling a Database for Merge Replication
	Creating a Publication
	Adding a publication
	Adding articles to your publication
	Configuring the Snapshot Agent
	Finalizing your publication

	Potential Problems
	Summary

	Chapter 11: Merge Replication – the Subscription
	Setting up a Subscription
	Selecting the Publisher
	Selecting the Merge Agent location
	Specifying the target database
	Configuring security
	Setting up permissions
	Setting up the schedule
	Initializing the subscription database
	Selecting the subscription type
	Finishing up your subscription

	Setting Up Your Subscription's Retention
	Synchronizing Your Subscription Manually
	Summary

	Chapter 12: Merge Replication – Conflicts
	Conflict Types
	Configuring the Tracking Level
	Row-level tracking
	Column-level tracking

	Conflict Resolvers
	The default resolver
	Other resolvers
	Custom resolvers
	Business logic handlers
	Interactive conflict resolution

	Reviewing Conflicts
	Summary

	Chapter 13: Replication Monitor
	Starting Replication Monitor
	Removing a Publisher
	Connecting to a Publisher
	Viewing Information About a Publisher, Its Publications and Subscriptions
	Viewing information about a Publisher
	Viewing information about transactional publications
	Viewing information about merge publications
	Viewing information about snapshot publications

	Subscription Information
	Alerts
	Summary

	Chapter 14: Troubleshooting
	Troubleshooting the Publication
	The Log Reader Agent
	The Snapshot Agent

	Troubleshooting a Subscription
	But what about the PAL?

	Other Tools and Issues
	Tracer tokens
	Always check the details
	Data problems

	Summary

	Book Ads Aug Col 2013

